Chunyang Li


2024

pdf bib
MAVEN-FACT: A Large-scale Event Factuality Detection Dataset
Chunyang Li | Hao Peng | Xiaozhi Wang | Yunjia Qi | Lei Hou | Bin Xu | Juanzi Li
Findings of the Association for Computational Linguistics: EMNLP 2024

Event Factuality Detection (EFD) task determines the factuality of textual events, i.e., classifying whether an event is a fact, possibility, or impossibility, which is essential for faithfully understanding and utilizing event knowledge. However, due to the lack of high-quality large-scale data, event factuality detection is under-explored in event understanding research, which limits the development of EFD community. To address these issues and provide faithful event understanding, we introduce MAVEN-FACT, a large-scale and high-quality EFD dataset based on the MAVEN dataset. MAVEN-FACT includes factuality annotations of 112,276 events, making it the largest EFD dataset. Extensive experiments demonstrate that MAVEN-FACT is challenging for both conventional fine-tuned models and large language models (LLMs). Thanks to the comprehensive annotations of event arguments and relations in MAVEN, MAVEN-FACT also supports some further analyses and we find that adopting event arguments and relations helps in event factuality detection for fine-tuned models but does not benefit LLMs. Furthermore, we preliminarily study an application case of event factuality detection and find it helps in mitigating event-related hallucination in LLMs. We will release our dataset and codes to facilitate further research on event factuality detection.

pdf bib
CANDLE: Iterative Conceptualization and Instantiation Distillation from Large Language Models for Commonsense Reasoning
Weiqi Wang | Tianqing Fang | Chunyang Li | Haochen Shi | Wenxuan Ding | Baixuan Xu | Zhaowei Wang | Jiaxin Bai | Xin Liu | Cheng Jiayang | Chunkit Chan | Yangqiu Song
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The sequential process of conceptualization and instantiation is essential to generalizable commonsense reasoning as it allows the application of existing knowledge to unfamiliar scenarios. However, existing works tend to undervalue the step of instantiation and heavilyrely on pre-built concept taxonomies and human annotations to collect both types of knowledge, resulting in a lack of instantiated knowledge to complete reasoning, high cost, and limited scalability. To tackle these challenges, we introduce CANDLE (ConceptuAlizationand INstantiation Distillation from Large Language ModEls), a distillation framework that iteratively performs contextualized conceptualization and instantiation over commonsense knowledge bases by instructing large language models to generate both types of knowledge with critic filtering. By applying CANDLE to ATOMIC (Sap et al., 2019a), we construct a comprehensive knowledge base comprising six million conceptualizations and instantiated commonsense knowledge triples. Both types of knowledge are firmly rooted in the original ATOMIC dataset, and intrinsic evaluations demonstrate their exceptional quality and diversity. Empirical results indicate that distilling CANDLE on student models provides benefits across three downstream tasks. Our data and models are publicly available at https://github.com/HKUST-KnowComp/CANDLE.