Chunyuan Yuan


pdf bib
Adaptive Hyper-parameter Learning for Deep Semantic Retrieval
Mingming Li | Chunyuan Yuan | Huimu Wang | Peng Wang | Jingwei Zhuo | Binbin Wang | Lin Liu | Sulong Xu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track

Deep semantic retrieval has achieved remarkable success in online E-commerce applications. The majority of methods aim to distinguish positive items and negative items for each query by utilizing margin loss or softmax loss. Despite their decent performance, these methods are highly sensitive to hyper-parameters, i.e., margin and temperature 𝜏, which measure the similarity of negative pairs and affect the distribution of items in metric space. How to design and choose adaptively parameters for different pairs is still an open challenge. Recently several methods have attempted to alleviate the above problem by learning each parameter through trainable/statistical methods in the recommendation. We argue that those are not suitable for retrieval scenarios, due to the agnosticism and diversity of the queries. To fully overcome this limitation, we propose a novel adaptive metric learning method that designs a simple and universal hyper-parameter-free learning method to improve the performance of retrieval. Specifically, we first propose a method that adaptive obtains the hyper-parameters by relying on the batch similarity without fixed or extra-trainable hyper-parameters. Subsequently, we adopt a symmetric metric learning method to mitigate model collapse issues. Furthermore, the proposed method is general and sheds a highlight on other fields. Extensive experiments demonstrate our method significantly outperforms previous methods on a real-world dataset, highlighting the superiority and effectiveness of our method. This method has been successfully deployed on an online E-commerce search platform and brought substantial economic benefits.


pdf bib
Label-Specific Dual Graph Neural Network for Multi-Label Text Classification
Qianwen Ma | Chunyuan Yuan | Wei Zhou | Songlin Hu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Multi-label text classification is one of the fundamental tasks in natural language processing. Previous studies have difficulties to distinguish similar labels well because they learn the same document representations for different labels, that is they do not explicitly extract label-specific semantic components from documents. Moreover, they do not fully explore the high-order interactions among these semantic components, which is very helpful to predict tail labels. In this paper, we propose a novel label-specific dual graph neural network (LDGN), which incorporates category information to learn label-specific components from documents, and employs dual Graph Convolution Network (GCN) to model complete and adaptive interactions among these components based on the statistical label co-occurrence and dynamic reconstruction graph in a joint way. Experimental results on three benchmark datasets demonstrate that LDGN significantly outperforms the state-of-the-art models, and also achieves better performance with respect to tail labels.


pdf bib
Early Detection of Fake News by Utilizing the Credibility of News, Publishers, and Users based on Weakly Supervised Learning
Chunyuan Yuan | Qianwen Ma | Wei Zhou | Jizhong Han | Songlin Hu
Proceedings of the 28th International Conference on Computational Linguistics

The dissemination of fake news significantly affects personal reputation and public trust. Recently, fake news detection has attracted tremendous attention, and previous studies mainly focused on finding clues from news content or diffusion path. However, the required features of previous models are often unavailable or insufficient in early detection scenarios, resulting in poor performance. Thus, early fake news detection remains a tough challenge. Intuitively, the news from trusted and authoritative sources or shared by many users with a good reputation is more reliable than other news. Using the credibility of publishers and users as prior weakly supervised information, we can quickly locate fake news in massive news and detect them in the early stages of dissemination. In this paper, we propose a novel structure-aware multi-head attention network (SMAN), which combines the news content, publishing, and reposting relations of publishers and users, to jointly optimize the fake news detection and credibility prediction tasks. In this way, we can explicitly exploit the credibility of publishers and users for early fake news detection. We conducted experiments on three real-world datasets, and the results show that SMAN can detect fake news in 4 hours with an accuracy of over 91%, which is much faster than the state-of-the-art models.


pdf bib
Multi-hop Selector Network for Multi-turn Response Selection in Retrieval-based Chatbots
Chunyuan Yuan | Wei Zhou | Mingming Li | Shangwen Lv | Fuqing Zhu | Jizhong Han | Songlin Hu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Multi-turn retrieval-based conversation is an important task for building intelligent dialogue systems. Existing works mainly focus on matching candidate responses with every context utterance on multiple levels of granularity, which ignore the side effect of using excessive context information. Context utterances provide abundant information for extracting more matching features, but it also brings noise signals and unnecessary information. In this paper, we will analyze the side effect of using too many context utterances and propose a multi-hop selector network (MSN) to alleviate the problem. Specifically, MSN firstly utilizes a multi-hop selector to select the relevant utterances as context. Then, the model matches the filtered context with the candidate response and obtains a matching score. Experimental results show that MSN outperforms some state-of-the-art methods on three public multi-turn dialogue datasets.