Chuyi Shang
2024
TraveLER: A Modular Multi-LMM Agent Framework for Video Question-Answering
Chuyi Shang
|
Amos You
|
Sanjay Subramanian
|
Trevor Darrell
|
Roei Herzig
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Recently, image-based Large Multimodal Models (LMMs) have made significant progress in video question-answering (VideoQA) using a frame-wise approach by leveraging large-scale pretraining in a zero-shot manner. Nevertheless, these models need to be capable of finding relevant information, extracting it, and answering the question simultaneously. Currently, existing methods perform all of these steps in a single pass without being able to adapt if insufficient or incorrect information is collected. To overcome this, we introduce a modular multi-LMM agent framework based on several agents with different roles, instructed by a Planner agent that updates its instructions using shared feedback from the other agents. Specifically, we propose TraveLER, a method that can create a plan to "**Trave**rse” through the video, ask questions about individual frames to "**L**ocate” and store key information, and then "**E**valuate” if there is enough information to answer the question. Finally, if there is not enough information, our method is able to "**R**eplan” based on its collected knowledge. Through extensive experiments, we find that the proposed TraveLER approach improves performance on several VideoQA benchmarks without the need to fine-tune on specific datasets. Our code is available at https://github.com/traveler-framework/TraveLER.
Search