Claudia Plant
2024
Text-Guided Image Clustering
Andreas Stephan
|
Lukas Miklautz
|
Kevin Sidak
|
Jan Philip Wahle
|
Bela Gipp
|
Claudia Plant
|
Benjamin Roth
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)
Image clustering divides a collection of images into meaningful groups, typically interpreted post-hoc via human-given annotations. Those are usually in the form of text, begging the question of using text as an abstraction for image clustering. Current image clustering methods, however, neglect the use of generated textual descriptions. We, therefore, propose Text-Guided Image Clustering, i.e., generating text using image captioning and visual question-answering (VQA) models and subsequently clustering the generated text. Further, we introduce a novel approach to inject task- or domain knowledge for clustering by prompting VQA models. Across eight diverse image clustering datasets, our results show that the obtained text representations often outperform image features. Additionally, we propose a counting-based cluster explainability method. Our evaluations show that the derived keyword-based explanations describe clusters better than the respective cluster accuracy suggests. Overall, this research challenges traditional approaches and paves the way for a paradigm shift in image clustering, using generated text.
Text-Guided Alternative Image Clustering
Andreas Stephan
|
Lukas Miklautz
|
Collin Leiber
|
Pedro Henrique Luz De Araujo
|
Dominik Répás
|
Claudia Plant
|
Benjamin Roth
Proceedings of the 9th Workshop on Representation Learning for NLP (RepL4NLP-2024)
Traditional image clustering techniques only find a single grouping within visual data. In particular, they do not provide a possibility to explicitly define multiple types of clustering. This work explores the potential of large vision-language models to facilitate alternative image clustering. We propose Text-Guided Alternative Image Consensus Clustering (TGAICC), a novel approach that leverages user-specified interests via prompts to guide the discovery of diverse clusterings. To achieve this, it generates a clustering for each prompt, groups them using hierarchical clustering, and then aggregates them using consensus clustering. TGAICC outperforms image- and text-based baselines on four alternative image clustering benchmark datasets. Furthermore, using count-based word statistics, we are able to obtain text-based explanations of the alternative clusterings. In conclusion, our research illustrates how contemporary large vision-language models can transform explanatory data analysis, enabling the generation of insightful, customizable, and diverse image clusterings.
Search
Fix data
Co-authors
- Lukas Miklautz 2
- Benjamin Roth 2
- Andreas Stephan 2
- Bela Gipp 1
- Collin Leiber 1
- show all...