Clement Chung


2023

pdf bib
Coordinated Replay Sample Selection for Continual Federated Learning
Jack Good | Jimit Majmudar | Christophe Dupuy | Jixuan Wang | Charith Peris | Clement Chung | Richard Zemel | Rahul Gupta
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track

Continual Federated Learning (CFL) combines Federated Learning (FL), the decentralized learning of a central model on a number of client devices that may not communicate their data, and Continual Learning (CL), the learning of a model from a continual stream of data without keeping the entire history. In CL, the main challenge is forgetting what was learned from past data. While replay-based algorithms that keep a small pool of past training data are effective to reduce forgetting, only simple replay sample selection strategies have been applied to CFL in prior work, and no previous work has explored coordination among clients for better sample selection. To bridge this gap, we adapt a replay sample selection objective based on loss gradient diversity to CFL and propose a new relaxation-based selection of samples to optimize the objective. Next, we propose a practical algorithm to coordinate gradient-based replay sample selection across clients without communicating private data. We benchmark our coordinated and uncoordinated replay sample selection algorithms against random sampling-based baselines with language models trained on a large scale de-identified real-world text dataset. We show that gradient-based sample selection methods both boost performance and reduce forgetting compared to random sampling methods, with our coordination method showing gains early in the low replay size regime (when the budget for storing past data is small).

2022

pdf bib
Training Mixed-Domain Translation Models via Federated Learning
Peyman Passban | Tanya Roosta | Rahul Gupta | Ankit Chadha | Clement Chung
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Training mixed-domain translation models is a complex task that demands tailored architec- tures and costly data preparation techniques. In this work, we leverage federated learning (FL) in order to tackle the problem. Our investiga- tion demonstrates that with slight modifications in the training process, neural machine trans- lation (NMT) engines can be easily adapted when an FL-based aggregation is applied to fuse different domains. Experimental results also show that engines built via FL are able to perform on par with state-of-the-art baselines that rely on centralized training techniques. We evaluate our hypothesis in the presence of five datasets with different sizes, from different domains, to translate from German into English and discuss how FL and NMT can mutually benefit from each other. In addition to provid- ing benchmarking results on the union of FL and NMT, we also propose a novel technique to dynamically control the communication band- width by selecting impactful parameters during FL updates. This is a significant achievement considering the large size of NMT engines that need to be exchanged between FL parties.

pdf bib
Federated Learning with Noisy User Feedback
Rahul Sharma | Anil Ramakrishna | Ansel MacLaughlin | Anna Rumshisky | Jimit Majmudar | Clement Chung | Salman Avestimehr | Rahul Gupta
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Machine Learning (ML) systems are getting increasingly popular, and drive more and more applications and services in our daily life. Thishas led to growing concerns over user privacy, since human interaction data typically needs to be transmitted to the cloud in order to trainand improve such systems. Federated learning (FL) has recently emerged as a method for training ML models on edge devices using sensitive user data and is seen as a way to mitigate concerns over data privacy. However, since ML models are most commonly trained with label supervision, we need a way to extract labels on edge to make FL viable. In this work, we propose a strategy for training FL models using positive and negative user feedback. We also design a novel framework to study different noise patterns in user feedback, and explore how well standard noise-robust objectives can help mitigate this noise when training models in a federated setting. We evaluate our proposed training setup through detailed experiments on two text classification datasets and analyze the effects of varying levels of user reliability and feedback noise on model performance. We show that our method improves substantially over a self-training baseline, achieving performance closer to models trained with full supervision.