Clément Lefebvre

Also published as: Clément LeFebvre


2023

pdf bib
Rethinking the Event Coding Pipeline with Prompt Entailment
Clément Lefebvre | Niklas Stoehr
Proceedings of the Sixth Fact Extraction and VERification Workshop (FEVER)

For monitoring crises, political events are extracted from the news. The large amount of unstructured full-text event descriptions makes a case-by-case analysis unmanageable, particularly for low-resource humanitarian aid organizations. This creates a demand to classify events into event types, a task referred to as event coding. Typically, domain experts craft an event type ontology, annotators label a large dataset and technical experts develop a supervised coding system. In this work, we propose PR-ENT, a new event coding approach that is more flexible and resource-efficient, while maintaining competitive accuracy: first, we extend an event description such as “Military injured two civilians” by a template, e.g. “People were [Z]” and prompt a pre-trained (cloze) language model to fill the slot Z. Second, we select suitable answer candidates Zstar = “injured”, “hurt”... by treating the event description as premise and the filled templates as hypothesis in a textual entailment task. In a final step, the selected answer candidate can be mapped to its corresponding event type. This allows domain experts to draft the codebook directly as labeled prompts and interpretable answer candidates. This human-in-the-loop process is guided by our codebook design tool. We show that our approach is robust through several checks: perturbing the event description and prompt template, restricting the vocabulary and removing contextual information.

pdf bib
Comparing Pre-Training Schemes for Luxembourgish BERT Models
Cedric Lothritz | Saad Ezzini | Christoph Purschke | Tegawendé Bissyandé | Jacques Klein | Isabella Olariu | Andrey Boytsov | Clément LeFebvre | Anne Goujon
Proceedings of the 19th Conference on Natural Language Processing (KONVENS 2023)

pdf bib
Evaluating the Impact of Text De-Identification on Downstream NLP Tasks
Cedric Lothritz | Bertrand Lebichot | Kevin Allix | Saad Ezzini | Tegawendé Bissyandé | Jacques Klein | Andrey Boytsov | Clément Lefebvre | Anne Goujon
Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa)

Data anonymisation is often required to comply with regulations when transfering information across departments or entities. However, the risk is that this procedure can distort the data and jeopardise the models built on it. Intuitively, the process of training an NLP model on anonymised data may lower the performance of the resulting model when compared to a model trained on non-anonymised data. In this paper, we investigate the impact of de-identification on the performance of nine downstream NLP tasks. We focus on the anonymisation and pseudonymisation of personal names and compare six different anonymisation strategies for two state-of-the-art pre-trained models. Based on these experiments, we formulate recommendations on how the de-identification should be performed to guarantee accurate NLP models. Our results reveal that de-identification does have a negative impact on the performance of NLP models, but this impact is relatively low. We also find that using pseudonymisation techniques involving random names leads to better performance across most tasks.

2022

pdf bib
LuxemBERT: Simple and Practical Data Augmentation in Language Model Pre-Training for Luxembourgish
Cedric Lothritz | Bertrand Lebichot | Kevin Allix | Lisa Veiber | Tegawende Bissyande | Jacques Klein | Andrey Boytsov | Clément Lefebvre | Anne Goujon
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Pre-trained Language Models such as BERT have become ubiquitous in NLP where they have achieved state-of-the-art performance in most NLP tasks. While these models are readily available for English and other widely spoken languages, they remain scarce for low-resource languages such as Luxembourgish. In this paper, we present LuxemBERT, a BERT model for the Luxembourgish language that we create using the following approach: we augment the pre-training dataset by considering text data from a closely related language that we partially translate using a simple and straightforward method. We are then able to produce the LuxemBERT model, which we show to be effective for various NLP tasks: it outperforms a simple baseline built with the available Luxembourgish text data as well the multilingual mBERT model, which is currently the only option for transformer-based language models in Luxembourgish. Furthermore, we present datasets for various downstream NLP tasks that we created for this study and will make available to researchers on request.