Clémentine Fourrier


2022

pdf bib
Caveats of Measuring Semantic Change of Cognates and Borrowings using Multilingual Word Embeddings
Clémentine Fourrier | Syrielle Montariol
Proceedings of the 3rd Workshop on Computational Approaches to Historical Language Change

Cognates and borrowings carry different aspects of etymological evolution. In this work, we study semantic change of such items using multilingual word embeddings, both static and contextualised. We underline caveats identified while building and evaluating these embeddings. We release both said embeddings and a newly-built historical words lexicon, containing typed relations between words of varied Romance languages.

pdf bib
Probing Multilingual Cognate Prediction Models
Clémentine Fourrier | Benoît Sagot
Findings of the Association for Computational Linguistics: ACL 2022

Character-based neural machine translation models have become the reference models for cognate prediction, a historical linguistics task. So far, all linguistic interpretations about latent information captured by such models have been based on external analysis (accuracy, raw results, errors). In this paper, we investigate what probing can tell us about both models and previous interpretations, and learn that though our models store linguistic and diachronic information, they do not achieve it in previously assumed ways.

pdf bib
Entities, Dates, and Languages: Zero-Shot on Historical Texts with T0
Francesco De Toni | Christopher Akiki | Javier De La Rosa | Clémentine Fourrier | Enrique Manjavacas | Stefan Schweter | Daniel Van Strien
Proceedings of BigScience Episode #5 -- Workshop on Challenges & Perspectives in Creating Large Language Models

In this work, we explore whether the recently demonstrated zero-shot abilities of the T0 model extend to Named Entity Recognition for out-of-distribution languages and time periods. Using a historical newspaper corpus in 3 languages as test-bed, we use prompts to extract possible named entities. Our results show that a naive approach for prompt-based zero-shot multilingual Named Entity Recognition is error-prone, but highlights the potential of such an approach for historical languages lacking labeled datasets. Moreover, we also find that T0-like models can be probed to predict the publication date and language of a document, which could be very relevant for the study of historical texts.

2021

pdf bib
Can Cognate Prediction Be Modelled as a Low-Resource Machine Translation Task?
Clémentine Fourrier | Rachel Bawden | Benoît Sagot
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

2020

pdf bib
Methodological Aspects of Developing and Managing an Etymological Lexical Resource: Introducing EtymDB-2.0
Clémentine Fourrier | Benoît Sagot
Proceedings of the Twelfth Language Resources and Evaluation Conference

Diachronic lexical information is not only important in the field of historical linguistics, but is also increasingly used in NLP, most recently for machine translation of low resource languages. Therefore, there is a need for fine-grained, large-coverage and accurate etymological lexical resources. In this paper, we propose a set of guidelines to generate such resources, for each step of the life-cycle of an etymological lexicon: creation, update, evaluation, dissemination, and exploitation. To illustrate the guidelines, we introduce EtymDB 2.0, an etymological database automatically generated from the Wiktionary, which contains 1.8 million lexemes, linked by more than 700,000 fine-grained etymological relations, across 2,536 living and dead languages. We also introduce use cases for which EtymDB 2.0 could represent a key resource, such as phylogenetic tree generation, low resource machine translation or medieval languages study.

pdf bib
Évolution phonologique des langues et réseaux de neurones : travaux préliminaires (Sound change and neural networks: preliminary experiments )
Clémentine Fourrier
Actes de la 6e conférence conjointe Journées d'Études sur la Parole (JEP, 33e édition), Traitement Automatique des Langues Naturelles (TALN, 27e édition), Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RÉCITAL, 22e édition). Volume 3 : Rencontre des Étudiants Chercheurs en Informatique pour le TAL

La prédiction de cognats est une tâche clef de la linguistique historique et présente de nombreuses similitudes avec les tâches de traduction automatique. Cependant, alors que cette seconde discipline a vu fleurir l’utilisation de méthodes neuronales, celles-ci restent largement absentes des outils utilisés en linguistique historique. Dans ce papier, nous étudions donc la performance des méthodes neuronales utilisées en traduction (les réseaux encodeur-décodeur) pour la tâche de prédiction de cognats. Nous nous intéressons notamment aux types de données utilisables pour cet apprentissage et comparons les résultats obtenus, sur différents types de données, entre des méthodes statistiques et des méthodes neuronales. Nous montrons que l’apprentissage de correspondances phonétiques n’est possible que sur des paires de cognats, et que les méthodes statistiques et neuronales semblent avoir des forces et faiblesses complémentaires quant à ce qu’elles apprennent des données.

pdf bib
Comparing Statistical and Neural Models for Learning Sound Correspondences
Clémentine Fourrier | Benoît Sagot
Proceedings of LT4HALA 2020 - 1st Workshop on Language Technologies for Historical and Ancient Languages

Cognate prediction and proto-form reconstruction are key tasks in computational historical linguistics that rely on the study of sound change regularity. Solving these tasks appears to be very similar to machine translation, though methods from that field have barely been applied to historical linguistics. Therefore, in this paper, we investigate the learnability of sound correspondences between a proto-language and daughter languages for two machine-translation-inspired models, one statistical, the other neural. We first carry out our experiments on plausible artificial languages, without noise, in order to study the role of each parameter on the algorithms respective performance under almost perfect conditions. We then study real languages, namely Latin, Italian and Spanish, to see if those performances generalise well. We show that both model types manage to learn sound changes despite data scarcity, although the best performing model type depends on several parameters such as the size of the training data, the ambiguity, and the prediction direction.