Cliff Wong


pdf bib
Knowledge-Rich Self-Supervision for Biomedical Entity Linking
Sheng Zhang | Hao Cheng | Shikhar Vashishth | Cliff Wong | Jinfeng Xiao | Xiaodong Liu | Tristan Naumann | Jianfeng Gao | Hoifung Poon
Findings of the Association for Computational Linguistics: EMNLP 2022

Entity linking faces significant challenges such as prolific variations and prevalent ambiguities, especially in high-value domains with myriad entities. Standard classification approaches suffer from the annotation bottleneck and cannot effectively handle unseen entities. Zero-shot entity linking has emerged as a promising direction for generalizing to new entities, but it still requires example gold entity mentions during training and canonical descriptions for all entities, both of which are rarely available outside of Wikipedia. In this paper, we explore Knowledge-RIch Self-Supervision (KRISS) for biomedical entity linking, by leveraging readily available domain knowledge. In training, it generates self-supervised mention examples on unlabeled text using a domain ontology and trains a contextual encoder using contrastive learning. For inference, it samples self-supervised mentions as prototypes for each entity and conducts linking by mapping the test mention to the most similar prototype. Our approach can easily incorporate entity descriptions and gold mention labels if available. We conducted extensive experiments on seven standard datasets spanning biomedical literature and clinical notes. Without using any labeled information, our method produces KRISSBERT, a universal entity linker for four million UMLS entities that attains new state of the art, outperforming prior self-supervised methods by as much as 20 absolute points in accuracy. We released KRISSBERT at


pdf bib
Modular Self-Supervision for Document-Level Relation Extraction
Sheng Zhang | Cliff Wong | Naoto Usuyama | Sarthak Jain | Tristan Naumann | Hoifung Poon
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Extracting relations across large text spans has been relatively underexplored in NLP, but it is particularly important for high-value domains such as biomedicine, where obtaining high recall of the latest findings is crucial for practical applications. Compared to conventional information extraction confined to short text spans, document-level relation extraction faces additional challenges in both inference and learning. Given longer text spans, state-of-the-art neural architectures are less effective and task-specific self-supervision such as distant supervision becomes very noisy. In this paper, we propose decomposing document-level relation extraction into relation detection and argument resolution, taking inspiration from Davidsonian semantics. This enables us to incorporate explicit discourse modeling and leverage modular self-supervision for each sub-problem, which is less noise-prone and can be further refined end-to-end via variational EM. We conduct a thorough evaluation in biomedical machine reading for precision oncology, where cross-paragraph relation mentions are prevalent. Our method outperforms prior state of the art, such as multi-scale learning and graph neural networks, by over 20 absolute F1 points. The gain is particularly pronounced among the most challenging relation instances whose arguments never co-occur in a paragraph.


pdf bib
Document-Level N-ary Relation Extraction with Multiscale Representation Learning
Robin Jia | Cliff Wong | Hoifung Poon
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Most information extraction methods focus on binary relations expressed within single sentences. In high-value domains, however, n-ary relations are of great demand (e.g., drug-gene-mutation interactions in precision oncology). Such relations often involve entity mentions that are far apart in the document, yet existing work on cross-sentence relation extraction is generally confined to small text spans (e.g., three consecutive sentences), which severely limits recall. In this paper, we propose a novel multiscale neural architecture for document-level n-ary relation extraction. Our system combines representations learned over various text spans throughout the document and across the subrelation hierarchy. Widening the system’s purview to the entire document maximizes potential recall. Moreover, by integrating weak signals across the document, multiscale modeling increases precision, even in the presence of noisy labels from distant supervision. Experiments on biomedical machine reading show that our approach substantially outperforms previous n-ary relation extraction methods.