Cong Liu

iFLYTEK Research

Other people with similar names: Cong Liu (University of California, Riverside), Cong Liu (May refer to several people), Cong Liu (Florida Atlantic University)


2023

pdf bib
GIFT: Graph-Induced Fine-Tuning for Multi-Party Conversation Understanding
Jia-Chen Gu | Zhenhua Ling | Quan Liu | Cong Liu | Guoping Hu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Addressing the issues of who saying what to whom in multi-party conversations (MPCs) has recently attracted a lot of research attention. However, existing methods on MPC understanding typically embed interlocutors and utterances into sequential information flows, or utilize only the superficial of inherent graph structures in MPCs. To this end, we present a plug-and-play and lightweight method named graph-induced fine-tuning (GIFT) which can adapt various Transformer-based pre-trained language models (PLMs) for universal MPC understanding. In detail, the full and equivalent connections among utterances in regular Transformer ignore the sparse but distinctive dependency of an utterance on another in MPCs. To distinguish different relationships between utterances, four types of edges are designed to integrate graph-induced signals into attention mechanisms to refine PLMs originally designed for processing sequential texts. We evaluate GIFT by implementing it into three PLMs, and test the performance on three downstream tasks including addressee recognition, speaker identification and response selection. Experimental results show that GIFT can significantly improve the performance of three PLMs on three downstream tasks and two benchmarks with only 4 additional parameters per encoding layer, achieving new state-of-the-art performance on MPC understanding.

pdf bib
Exploring Prompt-based Multi-task Learning for Multimodal Dialog State Tracking and Immersive Multimodal Conversation
Yirong Chen | Ya Li | Tao Wang | Xiaofen Xing | Xiangmin Xu | Quan Liu | Cong Liu | Guoping Hu
Proceedings of The Eleventh Dialog System Technology Challenge

With the rise of the metaverse, immersive multimodal conversation has attracted more and more researchers’ attention. Multimodal contexts will become more important for human-computer interaction in the metaverse, especially in shopping domain. Unlike traditional conversation tasks, immersive multimodal conversation has challenges such as multimodal ambiguous candidate identification and multimodal coreference resolution, which makes it more difficult to dialog state tracking and response generation, as described in SIMMC 2.1 challenge, a part of DSTC11. In particular, as the number of objects in the scene increases, the difficulty will increase dramatically. We proposed a prompt-based multi-task learning Encoder-Decoder, in which different subtasks use different prompts to make the model tend to focus on the current subtask. We achieve the winner in ambiguous candidates indentification and runner-up in multimodal coreference resolution (MM-Coref), multimodal dialog state tracking (MM-DST) and assistant response generation. Our code and model are made publicly available at https://github.com/scutcyr/dstc11-simmc2.1-scut-bds-lab.

pdf bib
MADNet: Maximizing Addressee Deduction Expectation for Multi-Party Conversation Generation
Jia-Chen Gu | Chao-Hong Tan | Caiyuan Chu | Zhen-Hua Ling | Chongyang Tao | Quan Liu | Cong Liu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Modeling multi-party conversations (MPCs) with graph neural networks has been proven effective at capturing complicated and graphical information flows. However, existing methods rely heavily on the necessary addressee labels and can only be applied to an ideal setting where each utterance must be tagged with an “@” or other equivalent addressee label. To study the scarcity of addressee labels which is a common issue in MPCs, we propose MADNet that maximizes addressee deduction expectation in heterogeneous graph neural networks for MPC generation. Given an MPC with a few addressee labels missing, existing methods fail to build a consecutively connected conversation graph, but only a few separate conversation fragments instead. To ensure message passing between these conversation fragments, four additional types of latent edges are designed to complete a fully-connected graph. Besides, to optimize the edge-type-dependent message passing for those utterances without addressee labels, an Expectation-Maximization-based method that iteratively generates silver addressee labels (E step), and optimizes the quality of generated responses (M step), is designed. Experimental results on two Ubuntu IRC channel benchmarks show that MADNet outperforms various baseline models on the task of MPC generation, especially under the more common and challenging setting where part of addressee labels are missing.

2022

pdf bib
Wider & Closer: Mixture of Short-channel Distillers for Zero-shot Cross-lingual Named Entity Recognition
Jun-Yu Ma | Beiduo Chen | Jia-Chen Gu | Zhenhua Ling | Wu Guo | Quan Liu | Zhigang Chen | Cong Liu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Zero-shot cross-lingual named entity recognition (NER) aims at transferring knowledge from annotated and rich-resource data in source languages to unlabeled and lean-resource data in target languages. Existing mainstream methods based on the teacher-student distillation framework ignore the rich and complementary information lying in the intermediate layers of pre-trained language models, and domain-invariant information is easily lost during transfer. In this study, a mixture of short-channel distillers (MSD) method is proposed to fully interact the rich hierarchical information in the teacher model and to transfer knowledge to the student model sufficiently and efficiently. Concretely, a multi-channel distillation framework is designed for sufficient information transfer by aggregating multiple distillers as a mixture. Besides, an unsupervised method adopting parallel domain adaptation is proposed to shorten the channels between the teacher and student models to preserve domain-invariant features. Experiments on four datasets across nine languages demonstrate that the proposed method achieves new state-of-the-art performance on zero-shot cross-lingual NER and shows great generalization and compatibility across languages and fields.