Congying Xia


2023

pdf bib
All Labels Together: Low-shot Intent Detection with an Efficient Label Semantic Encoding Paradigm
Jiangshu Du | Congying Xia | Wenpeng Yin | Tingting Liang | Philip Yu
Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 2: Short Papers)

2021

pdf bib
Incremental Few-shot Text Classification with Multi-round New Classes: Formulation, Dataset and System
Congying Xia | Wenpeng Yin | Yihao Feng | Philip Yu
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Text classification is usually studied by labeling natural language texts with relevant categories from a predefined set. In the real world, new classes might keep challenging the existing system with limited labeled data. The system should be intelligent enough to recognize upcoming new classes with a few examples. In this work, we define a new task in the NLP domain, incremental few-shot text classification, where the system incrementally handles multiple rounds of new classes. For each round, there is a batch of new classes with a few labeled examples per class. Two major challenges exist in this new task: (i) For the learning process, the system should incrementally learn new classes round by round without re-training on the examples of preceding classes; (ii) For the performance, the system should perform well on new classes without much loss on preceding classes. In addition to formulating the new task, we also release two benchmark datasets in the incremental few-shot setting: intent classification and relation classification. Moreover, we propose two entailment approaches, ENTAILMENT and HYBRID, which show promise for solving this novel problem.

pdf bib
HETFORMER: Heterogeneous Transformer with Sparse Attention for Long-Text Extractive Summarization
Ye Liu | Jianguo Zhang | Yao Wan | Congying Xia | Lifang He | Philip Yu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

To capture the semantic graph structure from raw text, most existing summarization approaches are built on GNNs with a pre-trained model. However, these methods suffer from cumbersome procedures and inefficient computations for long-text documents. To mitigate these issues, this paper proposes HetFormer, a Transformer-based pre-trained model with multi-granularity sparse attentions for long-text extractive summarization. Specifically, we model different types of semantic nodes in raw text as a potential heterogeneous graph and directly learn heterogeneous relationships (edges) among nodes by Transformer. Extensive experiments on both single- and multi-document summarization tasks show that HetFormer achieves state-of-the-art performance in Rouge F1 while using less memory and fewer parameters.

pdf bib
Few-Shot Intent Detection via Contrastive Pre-Training and Fine-Tuning
Jianguo Zhang | Trung Bui | Seunghyun Yoon | Xiang Chen | Zhiwei Liu | Congying Xia | Quan Hung Tran | Walter Chang | Philip Yu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

In this work, we focus on a more challenging few-shot intent detection scenario where many intents are fine-grained and semantically similar. We present a simple yet effective few-shot intent detection schema via contrastive pre-training and fine-tuning. Specifically, we first conduct self-supervised contrastive pre-training on collected intent datasets, which implicitly learns to discriminate semantically similar utterances without using any labels. We then perform few-shot intent detection together with supervised contrastive learning, which explicitly pulls utterances from the same intent closer and pushes utterances across different intents farther. Experimental results show that our proposed method achieves state-of-the-art performance on three challenging intent detection datasets under 5-shot and 10-shot settings.

pdf bib
PDALN: Progressive Domain Adaptation over a Pre-trained Model for Low-Resource Cross-Domain Named Entity Recognition
Tao Zhang | Congying Xia | Philip S. Yu | Zhiwei Liu | Shu Zhao
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Cross-domain Named Entity Recognition (NER) transfers the NER knowledge from high-resource domains to the low-resource target domain. Due to limited labeled resources and domain shift, cross-domain NER is a challenging task. To address these challenges, we propose a progressive domain adaptation Knowledge Distillation (KD) approach – PDALN. It achieves superior domain adaptability by employing three components: (1) Adaptive data augmentation techniques, which alleviate cross-domain gap and label sparsity simultaneously; (2) Multi-level Domain invariant features, derived from a multi-grained MMD (Maximum Mean Discrepancy) approach, to enable knowledge transfer across domains; (3) Advanced KD schema, which progressively enables powerful pre-trained language models to perform domain adaptation. Extensive experiments on four benchmarks show that PDALN can effectively adapt high-resource domains to low-resource target domains, even if they are diverse in terms and writing styles. Comparison with other baselines indicates the state-of-the-art performance of PDALN.

2020

pdf bib
MZET: Memory Augmented Zero-Shot Fine-grained Named Entity Typing
Tao Zhang | Congying Xia | Chun-Ta Lu | Philip Yu
Proceedings of the 28th International Conference on Computational Linguistics

Named entity typing (NET) is a classification task of assigning an entity mention in the context with given semantic types. However, with the growing size and granularity of the entity types, few previous researches concern with newly emerged entity types. In this paper, we propose MZET, a novel memory augmented FNET (Fine-grained NET) model, to tackle the unseen types in a zero-shot manner. MZET incorporates character-level, word-level, and contextural-level information to learn the entity mention representation. Besides, MZET considers the semantic meaning and the hierarchical structure into the entity type representation. Finally, through the memory component which models the relationship between the entity mention and the entity type, MZET transfers the knowledge from seen entity types to the zero-shot ones. Extensive experiments on three public datasets show the superior performance obtained by MZET, which surpasses the state-of-the-art FNET neural network models with up to 8% gain in Micro-F1 and Macro-F1 score.

pdf bib
Mixup-Transformer: Dynamic Data Augmentation for NLP Tasks
Lichao Sun | Congying Xia | Wenpeng Yin | Tingting Liang | Philip Yu | Lifang He
Proceedings of the 28th International Conference on Computational Linguistics

Mixup is a latest data augmentation technique that linearly interpolates input examples and the corresponding labels. It has shown strong effectiveness in image classification by interpolating images at the pixel level. Inspired by this line of research, in this paper, we explore i) how to apply mixup to natural language processing tasks since text data can hardly be mixed in the raw format; ii) if mixup is still effective in transformer-based learning models,e.g., BERT.To achieve the goal, we incorporate mixup to transformer-based pre-trained architecture, named“mixup-transformer”, for a wide range of NLP tasks while keeping the whole end-to-end training system. We evaluate the proposed framework by running extensive experiments on the GLUEbenchmark. Furthermore, we also examine the performance of mixup-transformer in low-resource scenarios by reducing the training data with a certain ratio. Our studies show that mixup is a domain-independent data augmentation technique to pre-trained language models, resulting in significant performance improvement for transformer-based models.

pdf bib
Hierarchical Bi-Directional Self-Attention Networks for Paper Review Rating Recommendation
Zhongfen Deng | Hao Peng | Congying Xia | Jianxin Li | Lifang He | Philip Yu
Proceedings of the 28th International Conference on Computational Linguistics

Review rating prediction of text reviews is a rapidly growing technology with a wide range of applications in natural language processing. However, most existing methods either use hand-crafted features or learn features using deep learning with simple text corpus as input for review rating prediction, ignoring the hierarchies among data. In this paper, we propose a Hierarchical bi-directional self-attention Network framework (HabNet) for paper review rating prediction and recommendation, which can serve as an effective decision-making tool for the academic paper review process. Specifically, we leverage the hierarchical structure of the paper reviews with three levels of encoders: sentence encoder (level one), intra-review encoder (level two) and inter-review encoder (level three). Each encoder first derives contextual representation of each level, then generates a higher-level representation, and after the learning process, we are able to identify useful predictors to make the final acceptance decision, as well as to help discover the inconsistency between numerical review ratings and text sentiment conveyed by reviewers. Furthermore, we introduce two new metrics to evaluate models in data imbalance situations. Extensive experiments on a publicly available dataset (PeerRead) and our own collected dataset (OpenReview) demonstrate the superiority of the proposed approach compared with state-of-the-art methods.

pdf bib
Dynamic Semantic Matching and Aggregation Network for Few-shot Intent Detection
Hoang Nguyen | Chenwei Zhang | Congying Xia | Philip Yu
Findings of the Association for Computational Linguistics: EMNLP 2020

Few-shot Intent Detection is challenging due to the scarcity of available annotated utterances. Although recent works demonstrate that multi-level matching plays an important role in transferring learned knowledge from seen training classes to novel testing classes, they rely on a static similarity measure and overly fine-grained matching components. These limitations inhibit generalizing capability towards Generalized Few-shot Learning settings where both seen and novel classes are co-existent. In this paper, we propose a novel Semantic Matching and Aggregation Network where semantic components are distilled from utterances via multi-head self-attention with additional dynamic regularization constraints. These semantic components capture high-level information, resulting in more effective matching between instances. Our multi-perspective matching method provides a comprehensive matching measure to enhance representations of both labeled and unlabeled instances. We also propose a more challenging evaluation setting that considers classification on the joint all-class label space. Extensive experimental results demonstrate the effectiveness of our method. Our code and data are publicly available.

pdf bib
Composed Variational Natural Language Generation for Few-shot Intents
Congying Xia | Caiming Xiong | Philip Yu | Richard Socher
Findings of the Association for Computational Linguistics: EMNLP 2020

In this paper, we focus on generating training examples for few-shot intents in the realistic imbalanced scenario. To build connections between existing many-shot intents and few-shot intents, we consider an intent as a combination of a domain and an action, and propose a composed variational natural language generator (CLANG), a transformer-based conditional variational autoencoder. CLANG utilizes two latent variables to represent the utterances corresponding to two different independent parts (domain and action) in the intent, and the latent variables are composed together to generate natural examples. Additionally, to improve the generator learning, we adopt the contrastive regularization loss that contrasts the in-class with the out-of-class utterance generation given the intent. To evaluate the quality of the generated utterances, experiments are conducted on the generalized few-shot intent detection task. Empirical results show that our proposed model achieves state-of-the-art performances on two real-world intent detection datasets.

2019

pdf bib
Multi-grained Named Entity Recognition
Congying Xia | Chenwei Zhang | Tao Yang | Yaliang Li | Nan Du | Xian Wu | Wei Fan | Fenglong Ma | Philip Yu
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

This paper presents a novel framework, MGNER, for Multi-Grained Named Entity Recognition where multiple entities or entity mentions in a sentence could be non-overlapping or totally nested. Different from traditional approaches regarding NER as a sequential labeling task and annotate entities consecutively, MGNER detects and recognizes entities on multiple granularities: it is able to recognize named entities without explicitly assuming non-overlapping or totally nested structures. MGNER consists of a Detector that examines all possible word segments and a Classifier that categorizes entities. In addition, contextual information and a self-attention mechanism are utilized throughout the framework to improve the NER performance. Experimental results show that MGNER outperforms current state-of-the-art baselines up to 4.4% in terms of the F1 score among nested/non-overlapping NER tasks.

2018

pdf bib
Zero-shot User Intent Detection via Capsule Neural Networks
Congying Xia | Chenwei Zhang | Xiaohui Yan | Yi Chang | Philip Yu
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

User intent detection plays a critical role in question-answering and dialog systems. Most previous works treat intent detection as a classification problem where utterances are labeled with predefined intents. However, it is labor-intensive and time-consuming to label users’ utterances as intents are diversely expressed and novel intents will continually be involved. Instead, we study the zero-shot intent detection problem, which aims to detect emerging user intents where no labeled utterances are currently available. We propose two capsule-based architectures: IntentCapsNet that extracts semantic features from utterances and aggregates them to discriminate existing intents, and IntentCapsNet-ZSL which gives IntentCapsNet the zero-shot learning ability to discriminate emerging intents via knowledge transfer from existing intents. Experiments on two real-world datasets show that our model not only can better discriminate diversely expressed existing intents, but is also able to discriminate emerging intents when no labeled utterances are available.