We study extractive question-answering in the medical domain (Medical-EQA). This problem has two main challenges: (i) domain specificity, as most AI models lack necessary domain knowledge, and (ii) extraction-based answering style, which restricts most autoregressive LLMs due to potential hallucinations. To handle those challenges, we propose TOP-Training, a target-oriented pre-training paradigm that stands out among all domain adaptation techniques with two desirable features: (i) TOP-Training moves one step further than popular domain-oriented fine-tuning since it not only moves closer to the target domain, but also familiarizes itself with the target dataset, and (ii) it does not assume the existence of a large set of unlabeled instances from the target domain. Specifically, for a target Medical-EQA dataset, we extract its entities and leverage large language models (LLMs) to generate synthetic texts containing those entities; we then demonstrate that pretraining on this synthetic text data yields better performance on the target Medical-EQA benchmarks. Overall, our contributions are threefold: (i) TOP-Training, a new pretraining technique to effectively adapt LLMs to better solve a target problem, (ii) TOP-Training has a wide application scope because it does not require the target problem to have a large set of unlabeled data, and (iii) our experiments highlight the limitations of autoregressive LLMs, emphasizing TOP-Training as a means to unlock the true potential of bidirectional LLMs.
Underpinning much of the recent progress in deep learning is the transformer architecture, which takes as input a sequence of embeddings E and emits an updated sequence of embeddings E’. A special [CLS] embedding is often included in this sequence, serving as a description of the sequence once processed and used as the basis for subsequent sequence-level tasks. The processed [CLS] embedding loses utility, however, when the model is presented with a multi-entity sequence and asked to perform an entity-specific task. When processing a multi-speaker dialogue, for example, the [CLS] embedding describes the entire dialogue, not any individual utterance/speaker. Existing methods toward entity-specific prediction involve redundant computation or post-processing outside of the transformer. We present a novel methodology for deriving entity-specific embeddings from a multi-entity sequence completely within the transformer, with a loose definition of entity amenable to many problem spaces. To show the generic applicability of our method, we apply it to widely different tasks: emotion recognition in conversation and player performance projection in baseball and show that it can be used to achieve SOTA in both. Code can be found at https://github.com/c-heat16/EntitySpecificEmbeddings.
Optical Character Recognition (OCR) is an established task with the objective of identifying the text present in an image. While many off-the-shelf OCR models exist, they are often trained for either scientific (e.g., formulae) or generic printed English text. Extracting text from chemistry publications requires an OCR model that is capable in both realms. Nougat, a recent tool, exhibits strong ability to parse academic documents, but is unable to parse tables in PubMed articles, which comprises a significant part of the academic community and is the focus of this work. To mitigate this gap, we present the Printed English and Chemical Equations (PEaCE) dataset, containing both synthetic and real-world records, and evaluate the efficacy of transformer-based OCR models when trained on this resource. Given that real-world records contain artifacts not present in synthetic records, we propose transformations that mimic such qualities. We perform a suite of experiments to explore the impact of patch size, multi-domain training, and our proposed transformations, ultimately finding that models with a small patch size trained on multiple domains using the proposed transformations yield the best performance. Our dataset and code is available at https://github.com/ZN1010/PEaCE.