Connor Jerzak


2024

pdf bib
Can Large Language Models (or Humans) Disentangle Text?
Nicolas Audinet de Pieuchon | Adel Daoud | Connor Jerzak | Moa Johansson | Richard Johansson
Proceedings of the Sixth Workshop on Natural Language Processing and Computational Social Science (NLP+CSS 2024)

We investigate the potential of large language models (LLMs) to disentangle text variables—to remove the textual traces of an undesired forbidden variable in a task sometimes known as text distillation and closely related to the fairness in AI and causal inference literature. We employ a range of various LLM approaches in an attempt to disentangle text by identifying and removing information about a target variable while preserving other relevant signals. We show that in the strong test of removing sentiment, the statistical association between the processed text and sentiment is still detectable to machine learning classifiers post-LLM-disentanglement. Furthermore, we find that human annotators also struggle to disentangle sentiment while preserving other semantic content. This suggests there may be limited separability between concept variables in some text contexts, highlighting limitations of methods relying on text-level transformations and also raising questions about the robustness of disentanglement methods that achieve statistical independence in representation space.

2022

pdf bib
Conceptualizing Treatment Leakage in Text-based Causal Inference
Adel Daoud | Connor Jerzak | Richard Johansson
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Causal inference methods that control for text-based confounders are becoming increasingly important in the social sciences and other disciplines where text is readily available. However, these methods rely on a critical assumption that there is no treatment leakage: that is, the text only contains information about the confounder and no information about treatment assignment. When this assumption does not hold, methods that control for text to adjust for confounders face the problem of post-treatment (collider) bias. However, the assumption that there is no treatment leakage may be unrealistic in real-world situations involving text, as human language is rich and flexible. Language appearing in a public policy document or health records may refer to the future and the past simultaneously, and thereby reveal information about the treatment assignment. In this article, we define the treatment-leakage problem, and discuss the identification as well as the estimation challenges it raises. Second, we delineate the conditions under which leakage can be addressed by removing the treatment-related signal from the text in a pre-processing step we define as text distillation. Lastly, using simulation, we show how treatment leakage introduces a bias in estimates of the average treatment effect (ATE) and how text distillation can mitigate this bias.