2024
pdf
bib
abs
Dodo: Dynamic Contextual Compression for Decoder-only LMs
Guanghui Qin
|
Corby Rosset
|
Ethan Chau
|
Nikhil Rao
|
Benjamin Van Durme
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Transformer-based language models (LMs) are inefficient in long contexts. We propose Dodo, a solution for context compression. Instead of one vector per token in a standard transformer model, Dodo represents text with a dynamic number of hidden states at each layer, reducing the cost of self-attention to a fraction of typical time and space. Moreover, off-the-shelf models such as LLaMA can be adapted to Dodo by efficient parameter tuning methods such as LoRA. In use, Dodo can act as either an autoregressive LM or a context compressor for downstream tasks. We demonstrate through experiments in language modeling, question answering, and summarization that Dodo retains capabilities in these tasks, while drastically reducing the overhead during decoding. For example, in the autoencoding task, Dodo shrinks context at a 20x compression ratio with a BLEU score of 98% for reconstruction, achieving nearly lossless encoding.
pdf
bib
abs
LLM-Rubric: A Multidimensional, Calibrated Approach to Automated Evaluation of Natural Language Texts
Helia Hashemi
|
Jason Eisner
|
Corby Rosset
|
Benjamin Van Durme
|
Chris Kedzie
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
This paper introduces a framework for the automated evaluation of natural language texts. A manually constructed rubric describes how to assess multiple dimensions of interest. To evaluate a text, a large language model (LLM) is prompted with each rubric question and produces a distribution over potential responses. The LLM predictions often fail to agree well with human judges—indeed, the humans do not fully agree with one another. However, the multiple LLM distributions can be _combined_ to _predict_ each human judge’s annotations on all questions, including a summary question that assesses overall quality or relevance. LLM-Rubric accomplishes this by training a small feed-forward neural network that includes both judge-specific and judge-independent parameters. When evaluating dialogue systems in a human-AI information-seeking task, we find that LLM-Rubric with 9 questions (assessing dimensions such as naturalness, conciseness, and citation quality) predicts human judges’ assessment of overall user satisfaction, on a scale of 1–4, with RMS error < 0.5, a 2× improvement over the uncalibrated baseline.
pdf
bib
abs
Automatic Pair Construction for Contrastive Post-training
Canwen Xu
|
Corby Rosset
|
Ethan Chau
|
Luciano Corro
|
Shweti Mahajan
|
Julian McAuley
|
Jennifer Neville
|
Ahmed Awadallah
|
Nikhil Rao
Findings of the Association for Computational Linguistics: NAACL 2024
Alignment serves as an important step to steer large language models (LLMs) towards human preferences. In this paper, we propose an automatic way to construct contrastive data for LLM, using preference pairs from multiple models of varying strengths (e.g., InstructGPT, ChatGPT and GPT-4). We compare the contrastive techniques of SLiC and DPO to SFT baselines and find that DPO provides a step-function improvement even after continuing SFT saturates. We also explore a data curriculum learning scheme for contrastive post-training, which starts by learning from “easier” pairs and transitioning to “harder” ones, which further improves alignment. Finally, we scale up our experiments to train with more data and larger models like Orca. Remarkably, our automatic contrastive post-training further improves the performance of Orca, already a state-of-the-art instruction learning model tuned with GPT-4 outputs, to outperform ChatGPT.
2023
pdf
bib
abs
Augmenting Zero-Shot Dense Retrievers with Plug-in Mixture-of-Memories
Suyu Ge
|
Chenyan Xiong
|
Corby Rosset
|
Arnold Overwijk
|
Jiawei Han
|
Paul Bennett
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
In this paper we improve the zero-shot generalization ability of language models via Mixture-Of-Memory Augmentation (MoMA), a mechanism that retrieves augmentation documents from multiple information corpora (external memories), with the option to “plug in” unseen memory at inference time. We develop a joint learning mechanism that trains the augmentation component with latent labels derived from the end retrieval task, paired with hard negatives from the memory mixture. We instantiate the model in a zero-shot dense retrieval setting by augmenting strong T5-based retrievers with MoMA. With only T5-base, our model obtains strong zero-shot retrieval accuracy on the eighteen tasks included in the standard BEIR benchmark, outperforming some systems with larger model sizes. As a plug-in-play model, our model can efficiently generalize to any unseen corpus, meanwhile achieving comparable or even better performance than methods relying on target-specific pretraining. Our analysis further illustrates the necessity of augmenting with mixture-of-memory for robust generalization, the benefits of augmentation learning, and how MoMA utilizes the plug-in memory at inference time without changing its parameters. Our code can be found at https://github.com/gesy17/MoMA.
pdf
bib
abs
Axiomatic Preference Modeling for Longform Question Answering
Corby Rosset
|
Guoqing Zheng
|
Victor Dibia
|
Ahmed Awadallah
|
Paul Bennett
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
The remarkable abilities of large language models (LLMs) like ChatGPT and GPT-4 partially stem from the post-training processes involving human preferences encoded within a reward model as part of a Reinforcement Learning from Human Feedback (RLHF) regimen. These reward models (RMs) often lack direct knowledge of why, or under what principles, the preferences annotations were made. In this study, we identify principles that guide RMs to better align with human preferences, and then develop an axiomatic framework to generate a rich variety of preference signals to uphold them. We use these axiomatic signals to train a model for the scoring answers to longform questions. Our approach yields a Preference Model with only about 220M parameters that agrees with gold human-annotated preference labels more often than GPT-4. The contributions of this work include: training a standalone preference model that can score human- and LLM-generated answers on the same scale; developing an axiomatic framework for generating training data pairs tailored to certain principles; and showing that a small amount of axiomatic signals can help small models outperform GPT-4 in preference scoring. We intend to release our axiomatic data and model.