Cordelia Schmid
2023
Tackling Ambiguity with Images: Improved Multimodal Machine Translation and Contrastive Evaluation
Matthieu Futeral
|
Cordelia Schmid
|
Ivan Laptev
|
Benoît Sagot
|
Rachel Bawden
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
One of the major challenges of machine translation (MT) is ambiguity, which can in some cases be resolved by accompanying context such as images. However, recent work in multimodal MT (MMT) has shown that obtaining improvements from images is challenging, limited not only by the difficulty of building effective cross-modal representations, but also by the lack of specific evaluation and training data. We present a new MMT approach based on a strong text-only MT model, which uses neural adapters, a novel guided self-attention mechanism and which is jointly trained on both visually-conditioned masking and MMT. We also introduce CoMMuTE, a Contrastive Multilingual Multimodal Translation Evaluation set of ambiguous sentences and their possible translations, accompanied by disambiguating images corresponding to each translation. Our approach obtains competitive results compared to strong text-only models on standard English→French, English→German and English→Czech benchmarks and outperforms baselines and state-of-the-art MMT systems by a large margin on our contrastive test set. Our code and CoMMuTE are freely available.
Modular Visual Question Answering via Code Generation
Sanjay Subramanian
|
Medhini Narasimhan
|
Kushal Khangaonkar
|
Kevin Yang
|
Arsha Nagrani
|
Cordelia Schmid
|
Andy Zeng
|
Trevor Darrell
|
Dan Klein
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
We present a framework that formulates visual question answering as modular code generation. In contrast to prior work on modular approaches to VQA, our approach requires no additional training and relies on pre-trained language models (LMs), visual models pre-trained on image-caption pairs, and fifty VQA examples used for in-context learning. The generated Python programs invoke and compose the outputs of the visual models using arithmetic and conditional logic. Our approach improves accuracy on the COVR dataset by at least 3% and on the GQA dataset by 2% compared to the few-shot baseline that does not employ code generation.
Search
Fix data
Co-authors
- Rachel Bawden 1
- Trevor Darrell 1
- Matthieu Futeral 1
- Kushal Khangaonkar 1
- Dan Klein 1
- show all...
Venues
- acl2