Cunliang Kong


2024

pdf bib
Fantastic Semantics and Where to Find Them: Investigating Which Layers of Generative LLMs Reflect Lexical Semantics
Zhu Liu | Cunliang Kong | Ying Liu | Maosong Sun
Findings of the Association for Computational Linguistics: ACL 2024

Large language models have achieved remarkable success in general language understanding tasks. However, as a family of generative methods with the objective of next token prediction, the semantic evolution with the depth of these models are not fully explored, unlike their predecessors, such as BERT-like architectures. In this paper, we specifically investigate the bottom-up evolution of lexical semantics for a popular LLM, namely Llama2, by probing its hidden states at the end of each layer using a contextualized word identification task. Our experiments show that the representations in lower layers encode lexical semantics, while the higher layers, with weaker semantic induction, are responsible for prediction. This is in contrast to models with discriminative objectives, such as mask language modeling, where the higher layers obtain better lexical semantics. The conclusion is further supported by the monotonic increase in performance via the hidden states for the last meaningless symbols, such as punctuation, in the prompting strategy. Our codes are available at https://github.com/RyanLiut/LLM_LexSem.

2023

pdf bib
Leveraging Prefix Transfer for Multi-Intent Text Revision
Ruining Chong | Cunliang Kong | Liu Wu | Zhenghao Liu | Ziye Jin | Liner Yang | Yange Fan | Hanghang Fan | Erhong Yang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Text revision is a necessary process to improve text quality. During this process, writers constantly edit texts out of different edit intentions. Identifying edit intention for a raw text is always an ambiguous work, and most previous work on revision systems mainly focuses on editing texts according to one specific edit intention. In this work, we aim to build a multi-intent text revision system that could revise texts without explicit intent annotation. Our system is based on prefix-tuning, which first gets prefixes for every edit intent, and then trains a prefix transfer module, enabling the system to selectively leverage the knowledge from various prefixes according to the input text. We conduct experiments on the IteraTeR dataset, and the results show that our system outperforms baselines. The system can significantly improve the SARI score with more than 3% improvements, which thrives on the learned editing intention prefixes.

pdf bib
CCL23-Eval 任务7总结报告: 汉语学习者文本纠错(Overview of CCL23-Eval Task: Chinese Learner Text Correction)
Hongxiang Chang | Yang Liu | Meng Xu | Yingying Wang | Cunliang Kong | Liner Yang | Yang Erhong | Maosong Sun | Gaoqi Rao | Renfen Hu | Zhenghao Liu | 鸿翔 常 | 洋 刘 | 萌 徐 | 莹莹 王 | 存良 孔 | 麟儿 杨 | 尔弘 杨 | 茂松 孙 | 高琦 饶 | 韧奋 胡 | 正皓 刘
Proceedings of the 22nd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)

“汉语学习者文本纠错(Chinese Learner Text Correction)评测比赛,是依托于第22届中国计算语言学大会举办的技术评测。针对汉语学习者文本,设置了多维度汉语学习者文本纠错和中文语法错误检测两个赛道。结合人工智能技术的不断进步和发展的时代背景,在两赛道下分别设置开放和封闭任务。开放任务允许使用大模型。以汉语学习者文本多维标注语料库YACLC为基础建设评测数据集,建立基于多参考答案的评价标准,构建基准评测框架,进一步推动汉语学习者文本纠错研究的发展。共38支队伍报名参赛,其中5支队伍成绩优异并提交了技术报告。”

2022

pdf bib
Multitasking Framework for Unsupervised Simple Definition Generation
Cunliang Kong | Yun Chen | Hengyuan Zhang | Liner Yang | Erhong Yang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The definition generation task can help language learners by providing explanations for unfamiliar words. This task has attracted much attention in recent years. We propose a novel task of Simple Definition Generation (SDG) to help language learners and low literacy readers. A significant challenge of this task is the lack of learner’s dictionaries in many languages, and therefore the lack of data for supervised training. We explore this task and propose a multitasking framework SimpDefiner that only requires a standard dictionary with complex definitions and a corpus containing arbitrary simple texts. We disentangle the complexity factors from the text by carefully designing a parameter sharing scheme between two decoders. By jointly training these components, the framework can generate both complex and simple definitions simultaneously. We demonstrate that the framework can generate relevant, simple definitions for the target words through automatic and manual evaluations on English and Chinese datasets. Our method outperforms the baseline model by a 1.77 SARI score on the English dataset, and raises the proportion of the low level (HSK level 1-3) words in Chinese definitions by 3.87%.

pdf bib
COMPILING: A Benchmark Dataset for Chinese Complexity Controllable Definition Generation
Jiaxin Yuan | Cunliang Kong | Chenhui Xie | Liner Yang | Erhong Yang
Proceedings of the 21st Chinese National Conference on Computational Linguistics

“The definition generation task aims to generate a word’s definition within a specific context automatically. However, owing to the lack of datasets for different complexities, the definitions produced by models tend to keep the same complexity level. This paper proposes a novel task of generating definitions for a word with controllable complexity levels. Correspondingly, we introduce COMPILING, a dataset given detailed information about Chinese definitions, and each definition is labeled with its complexity levels. The COMPILING dataset includes 74,303 words and 106,882 definitions. To the best of our knowledge, it is the largest dataset of the Chinese definition generation task. We select various representative generation methods as baselines for this task and conduct evaluations, which illustrates that our dataset plays an outstanding role in assisting models in generating different complexity-level definitions. We believe that the COMPILING dataset will benefit further research in complexity controllable definition generation.”

pdf bib
BLCU-ICALL at SemEval-2022 Task 1: Cross-Attention Multitasking Framework for Definition Modeling
Cunliang Kong | Yujie Wang | Ruining Chong | Liner Yang | Hengyuan Zhang | Erhong Yang | Yaping Huang
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

This paper describes the BLCU-ICALL system used in the SemEval-2022 Task 1 Comparing Dictionaries and Word Embeddings, the Definition Modeling subtrack, achieving 1st on Italian, 2nd on Spanish and Russian, and 3rd on English and French. We propose a transformer-based multitasking framework to explore the task. The framework integrates multiple embedding architectures through the cross-attention mechanism, and captures the structure of glosses through a masking language model objective. Additionally, we also investigate a simple but effective model ensembling strategy to further improve the robustness. The evaluation results show the effectiveness of our solution. We release our code at: https://github.com/blcuicall/SemEval2022-Task1-DM.

2020

pdf bib
基于BERT与柱搜索的中文释义生成(Chinese Definition Modeling Based on BERT and Beam Seach)
Qinan Fan (范齐楠) | Cunliang Kong (孔存良) | Liner Yang (杨麟儿) | Erhong Yang (杨尔弘)
Proceedings of the 19th Chinese National Conference on Computational Linguistics

释义生成任务是指为一个目标词生成相应的释义。前人研究中文释义生成任务时未考虑目标词的上下文,本文首次在中文释义生成任务中使用了目标词的上下文信息,并提出了一个基于BERT与柱搜索的释义生成模型。本文构建了包含上下文的CWN中文数据集用于开展实验,除了BLEU指标之外,还使用语义相似度作为额外的自动评价指标,实验结果显示本文模型在中文CWN数据集和英文Oxford数据集上均有显著提升,人工评价结果也与自动评价结果一致。最后,本文对生成实例进行了深入分析。

2017

pdf bib
ALS at IJCNLP-2017 Task 5: Answer Localization System for Multi-Choice Question Answering in Exams
Changliang Li | Cunliang Kong
Proceedings of the IJCNLP 2017, Shared Tasks

Multi-choice question answering in exams is a typical QA task. To accomplish this task, we present an answer localization method to locate answers shown in web pages, considering structural information and semantic information both. Using this method as basis, we analyze sentences and paragraphs appeared on web pages to get predictions. With this answer localization system, we get effective results on both validation dataset and test dataset.