Cyril Leung
2023
Can ChatGPT Assess Human Personalities? A General Evaluation Framework
Haocong Rao
|
Cyril Leung
|
Chunyan Miao
Findings of the Association for Computational Linguistics: EMNLP 2023
Large Language Models (LLMs) especially ChatGPT have produced impressive results in various areas, but their potential human-like psychology is still largely unexplored. Existing works study the virtual personalities of LLMs but rarely explore the possibility of analyzing human personalities via LLMs. This paper presents a generic evaluation framework for LLMs to assess human personalities based on Myers–Briggs Type Indicator (MBTI) tests. Specifically, we first devise unbiased prompts by randomly permuting options in MBTI questions and adopt the average testing result to encourage more impartial answer generation. Then, we propose to replace the subject in question statements to enable flexible queries and assessments on different subjects from LLMs. Finally, we re-formulate the question instructions in a manner of correctness evaluation to facilitate LLMs to generate clearer responses. The proposed framework enables LLMs to flexibly assess personalities of different groups of people. We further propose three evaluation metrics to measure the consistency, robustness, and fairness of assessment results from state-of-the-art LLMs including ChatGPT and GPT-4. Our experiments reveal ChatGPT’s ability to assess human personalities, and the average results demonstrate that it can achieve more consistent and fairer assessments in spite of lower robustness against prompt biases compared with InstructGPT.
2022
Exploring Representation-level Augmentation for Code Search
Haochen Li
|
Chunyan Miao
|
Cyril Leung
|
Yanxian Huang
|
Yuan Huang
|
Hongyu Zhang
|
Yanlin Wang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Code search, which aims at retrieving the most relevant code fragment for a given natural language query, is a common activity in software development practice. Recently, contrastive learning is widely used in code search research, where many data augmentation approaches for source code (e.g., semantic-preserving program transformation) are proposed to learn better representations. However, these augmentations are at the raw-data level, which requires additional code analysis in the preprocessing stage and additional training cost in the training stage. In this paper, we explore augmentation methods that augment data (both code and query) at representation level which does not require additional data processing and training, and based on this we propose a general format of representation-level augmentation that unifies existing methods. Then, we propose three new augmentation methods (linear extrapolation, binary interpolation, and Gaussian scaling) based on the general format. Furthermore, we theoretically analyze the advantages of the proposed augmentation methods over traditional contrastive learning methods on code search. We experimentally evaluate the proposed representation-level augmentation methods with state-of-the-art code search models on a large-scale public dataset consisting of six programming languages. The experimental results show that our approach can consistently boost the performance of the studied code search models.
Search
Fix data
Co-authors
- Chunyan Miao 2
- Yanxian Huang 1
- Yuan Huang 1
- Haochen Li 1
- Haocong Rao 1
- show all...