In Reinforcement Learning from Human Feedback (RLHF), the reward model (RM) evaluates the response quality based on the given context and assigns a reward. It plays a crucial role in aligning RLHF with human preferences. Although the current RM training paradigm concatenates the context and response while amplifying the reward difference between good and bad response pairs, we demonstrate that the RM faces two significant issues: i) it often allocates only a small proportion of attention to the context, and ii) it frequently ignores segments of the context that are relevant for evaluating the response quality. These issues undermine the RM’s effectiveness in modeling human preferences. To further address these challenges, we propose AttnRM, a novel optimization framework that enables the RM to concentrate on crucial segments of the context. Experimental results demonstrate that AttnRM significantly improves preference modeling by increasing attention to relevant information within the context. It also enhances the RM’s generalizability and achieves better performance in aligning with human preferences.
Aligning large language models (LLMs) with human preferences is a central challenge for building reliable AI systems. Most existing alignment approaches rely on static signals, such as predefined principles or offline human annotations to guide model behavior toward a fixed approximation of human preferences. However, LLMs can exhibit distributional drift during training, and static alignment mechanisms lack the capacity to adaptively correct misaligned behaviors as they emerge. To address this limitation, we develop a two-stage framework that enables dynamic and continuous alignment. In the first stage, a constitution is continually revised based on observed model behaviors, and models are trained to comply with these evolving principles. In the second stage, this learned constitution is used to guide reinforcement learning, encouraging the model to align with the updated normative signals. We refer to this framework as COCOA: Co-evolution of Constitutions and AI Models. We show that COCOA enables a 7B model to greatly improve safety—raising StrongReject score from 0.741 to 0.935 and Safe-RLHF accuracy from 77.76% to 90.64% without human annotations, reaching performance close to much larger state-of-the-art models.
Evaluating large language models (LLMs) in medicine is crucial because medical applications require high accuracy with little room for error. Current medical benchmarks have three main types: medical exam-based, comprehensive medical, and specialized assessments. However, these benchmarks have limitations in question design (mostly multiple-choice), data sources (often not derived from real clinical scenarios), and evaluation methods (poor assessment of complex reasoning). To address these issues, we present LLMEval-Medicine, a new benchmark covering five core medical areas, including 2,996 questions created from real-world electronic health records and expert-designed clinical scenarios. We also design an automated evaluation pipeline, incorporating expert-developed checklists into our LLM-as-Judge framework. Furthermore, our methodology validates machine scoring through human-machine agreement analysis, dynamically refining checklists and prompts based on expert feedback to ensure reliability. We evaluate 13 LLMs across three categories (specialized medical models, open-source models, and closed-source models) on LLMEval-Med, providing valuable insights for the safe and effective deployment of LLMs in medical domains.