Christos Vlachos
2025
Building Open-Retrieval Conversational Question Answering Systems by Generating Synthetic Data and Decontextualizing User Questions
Christos Vlachos
|
Nikolaos Stylianou
|
Alexandra Fiotaki
|
Spiros Methenitis
|
Elisavet Palogiannidi
|
Themos Stafylakis
|
Ion Androutsopoulos
Proceedings of the 26th Annual Meeting of the Special Interest Group on Discourse and Dialogue
We consider open-retrieval conversational question answering (OR-CONVQA), an extension of question answering where system responses need to be (i) aware of dialog history and (ii) grounded in documents (or document fragments) retrieved per question. Domain-specific OR-CONVQA training datasets are crucial for real-world applications, but hard to obtain. We propose a pipeline that capitalizes on the abundance of plain text documents in organizations (e.g., product documentation) to automatically produce realistic OR-CONVQA dialogs with annotations. Similarly to real-world humanannotated OR-CONVQA datasets, we generate in-dialog question-answer pairs, self-contained (decontextualized, e.g., no referring expressions) versions of user questions, and propositions (sentences expressing prominent information from the documents) the system responses are grounded in. We show how the synthetic dialogs can be used to train efficient question rewriters that decontextualize user questions, allowing existing dialog-unaware retrievers to be utilized. The retrieved information and the decontextualized question are then passed on to an LLM that generates the system’s response.
2024
Comparing Data Augmentation Methods for End-to-End Task-Oriented Dialog Systems
Christos Vlachos
|
Themos Stafylakis
|
Ion Androutsopoulos
Findings of the Association for Computational Linguistics: ACL 2024
Creating effective and reliable task-oriented dialog systems (ToDSs) is challenging, not only because of the complex structure of these systems, but also due to the scarcity of training data, especially when several modules need to be trained separately, each one with its own input/output training examples. Data augmentation (DA), whereby synthetic training examples are added to the training data, has been successful in other NLP systems, but has not been explored as extensively in ToDSs. We empirically evaluate the effectiveness of DA methods in an end-to-end ToDS setting, where a single system is trained to handle all processing stages, from user inputs to system outputs. We experiment with two ToDSs (UBAR, GALAXY) on two datasets (MultiWOZ, KVRET). We consider three types of DA methods (word-level, sentence-level, dialog-level), comparing eight DA methods that have shown promising results in ToDSs and other NLP systems. We show that all DA methods considered are beneficial, and we highlight the best ones, also providing advice to practitioners. We also introduce a more challenging few-shot cross-domain ToDS setting, reaching similar conclusions.