Da Yin


2024

pdf bib
Trial and Error: Exploration-Based Trajectory Optimization of LLM Agents
Yifan Song | Da Yin | Xiang Yue | Jie Huang | Sujian Li | Bill Yuchen Lin
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large Language Models (LLMs) have become integral components in various autonomous agent systems.In this study, we present an exploration-based trajectory optimization approach, referred to as ETO. This learning method is designed to enhance the performance of open LLM agents. Contrary to previous studies that exclusively train on successful expert trajectories, our method allows agents to learn from their exploration failures. This leads to improved performance through an iterative optimization framework. During the exploration phase, the agent interacts with the environment while completing given tasks, gathering failure trajectories to create contrastive trajectory pairs. In the subsequent training phase, the agent utilizes these trajectory preference pairs to update its policy using contrastive learning methods like DPO. This iterative cycle of exploration and training fosters continued improvement in the agents. Our experiments on three complex tasks demonstrate that ETO consistently surpasses baseline performance by a large margin. Furthermore, an examination of task-solving efficiency and potential in scenarios lacking expert trajectory underscores the effectiveness of our approach.

pdf bib
Agent Lumos: Unified and Modular Training for Open-Source Language Agents
Da Yin | Faeze Brahman | Abhilasha Ravichander | Khyathi Chandu | Kai-Wei Chang | Yejin Choi | Bill Yuchen Lin
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Closed-source agents suffer from several issues such as a lack of affordability, transparency, and reproducibility, particularly on complex interactive tasks. This motivates the development of open-source alternatives. We introduce Lumos, one of the first frameworks for training open-source LLM-based agents. Lumos features a learnable, unified and modular architecture with a planning module that learns high-level subgoal generation, and a grounding module trained to translate these into the actions using various tools in the execution module. The design allows for modular upgrades and wider applicability to diverse interactive tasks. To foster generalizable agent learning, we collect large-scale, unified, and high-quality training annotations derived from diverse ground-truth reasoning rationales across various complex interactive tasks. On 9 datasets, Lumos exhibits several key advantages: (1) Lumos excels multiple larger open-source agents on the held-out datasets (unused for training) for each task type. Lumos even surpasses GPT agents on QA and web tasks; (2) Lumos outperforms open-source agents produced by chain-of-thoughts and unmodularized integrated training; and (3) Lumos effectively generalizes to unseen tasks, outperforming 33B-scale agents and domain-specific agents. Code and data will be released.

pdf bib
KPEval: Towards Fine-Grained Semantic-Based Keyphrase Evaluation
Di Wu | Da Yin | Kai-Wei Chang
Findings of the Association for Computational Linguistics: ACL 2024

Despite the significant advancements in keyphrase extraction and keyphrase generation methods, the predominant approach for evaluation mainly relies on exact matching with human references. This scheme fails to recognize systems that generate keyphrases semantically equivalent to the references or diverse keyphrases that carry practical utility. To better assess the capability of keyphrase systems, we propose KPEval, a comprehensive evaluation framework consisting of four critical aspects: reference agreement, faithfulness, diversity, and utility. For each aspect, we design semantic-based metrics to reflect the evaluation objectives. Meta-evaluation studies demonstrate that our evaluation strategy correlates better with human preferences compared to a range of previously proposed metrics. Using KPEval, we re-evaluate 23 keyphrase systems and discover that (1) established model comparison results have blind-spots especially when considering reference-free evaluation; (2) large language models are underestimated by prior evaluation works; and (3) there is no single best model that can excel in all the aspects.

2023

pdf bib
Dynosaur: A Dynamic Growth Paradigm for Instruction-Tuning Data Curation
Da Yin | Xiao Liu | Fan Yin | Ming Zhong | Hritik Bansal | Jiawei Han | Kai-Wei Chang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Instruction tuning has emerged to enhance the capabilities of large language models (LLMs) to comprehend instructions and generate appropriate responses. Existing methods either manually annotate or employ LLM (e.g., GPT-series) to generate data for instruction tuning. However, they often overlook associating instructions with existing annotated datasets. In this paper, we propose Dynosaur, a dynamic growth paradigm for the automatic curation of instruction-tuning data. Based on the metadata of existing datasets, we use LLMs to automatically construct instruction-tuning data by identifying relevant data fields and generating appropriate instructions. By leveraging the existing annotated datasets, Dynosaur offers several advantages: 1) it reduces the API cost for generating instructions (e.g., it costs less than $12 USD by calling GPT-3.5-turbo for generating 800K instruction tuning samples; 2) it provides high-quality data for instruction tuning (e.g., it performs better than Alpaca and Flan on Super-NI and Longform with comparable data sizes); and 3) it supports the continuous improvement of models by generating instruction-tuning data when a new annotated dataset becomes available. We further investigate a continual learning scheme for learning with the ever-growing instruction-tuning dataset, and demonstrate that replaying tasks with diverse instruction embeddings not only helps mitigate forgetting issues but generalizes to unseen tasks better. Code and data are available at https://github.com/WadeYin9712/Dynosaur.

pdf bib
The Magic of IF: Investigating Causal Reasoning Abilities in Large Language Models of Code
Xiao Liu | Da Yin | Chen Zhang | Yansong Feng | Dongyan Zhao
Findings of the Association for Computational Linguistics: ACL 2023

Causal reasoning, the ability to identify cause-and-effect relationship, is crucial in human thinking. Although large language models (LLMs) succeed in many NLP tasks, it is still challenging for them to conduct complex causal reasoning like abductive reasoning and counterfactual reasoning. Given the fact that programming code may express causal relations more often and explicitly with conditional statements like “if“, we want to explore whether Code-LLMs acquire better causal reasoning abilities. Our experiments show that compared to text-only LLMs, Code-LLMs with code prompts are better causal reasoners. We further intervene on the prompts from different aspects, and discover that the key point is the programming structure. Code and data are available at https://github.com/xxxiaol/magic-if.

pdf bib
LEAF: Linguistically Enhanced Event Temporal Relation Framework
Stanley Lim | Da Yin | Nanyun Peng
Proceedings of the 2nd Workshop on Pattern-based Approaches to NLP in the Age of Deep Learning

Linguistic structures can implicitly imply diverse types of event relations that have been previously underexplored. For example, the sentence “John was cooking freshly made noodles for the family gathering” contains no explicit temporal indicators between the events, such as before. Despite this, it is easy for humans to conclude, based on syntax, that the noodles were made before John started cooking, and that the family gathering starts after John starts cooking. We introduce Linguistically enhanced Event TemporAl relation Framework (LEAF), a simple and effective approach to acquiring rich temporal knowledge of events from large-scale corpora. This method improves pre-trained language models by automatically extracting temporal relation knowledge from unannotated corpora using diverse temporal knowledge patterns. We begin by manually curating a comprehensive list of atomic patterns that imply temporal relations between events. These patterns involve event pairs in which one event is contained within the argument of the other. Using transitivity, we discover compositional patterns and assign labels to event pairs involving these patterns. Finally, we make language models learn the rich knowledge by pre-training with the acquired temporal relation supervision. Experiments show that our method outperforms or rivals previous models on two event relation datasets: MATRES and TB-Dense. Our approach is also simpler from past works and excels at identifying complex compositional event relations.

2022

pdf bib
Things not Written in Text: Exploring Spatial Commonsense from Visual Signals
Xiao Liu | Da Yin | Yansong Feng | Dongyan Zhao
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Spatial commonsense, the knowledge about spatial position and relationship between objects (like the relative size of a lion and a girl, and the position of a boy relative to a bicycle when cycling), is an important part of commonsense knowledge. Although pretrained language models (PLMs) succeed in many NLP tasks, they are shown to be ineffective in spatial commonsense reasoning. Starting from the observation that images are more likely to exhibit spatial commonsense than texts, we explore whether models with visual signals learn more spatial commonsense than text-based PLMs. We propose a spatial commonsense benchmark that focuses on the relative scales of objects, and the positional relationship between people and objects under different actions. We probe PLMs and models with visual signals, including vision-language pretrained models and image synthesis models, on this benchmark, and find that image synthesis models are more capable of learning accurate and consistent spatial knowledge than other models. The spatial knowledge from image synthesis models also helps in natural language understanding tasks that require spatial commonsense.

pdf bib
How well can Text-to-Image Generative Models understand Ethical Natural Language Interventions?
Hritik Bansal | Da Yin | Masoud Monajatipoor | Kai-Wei Chang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Text-to-image generative models have achieved unprecedented success in generating high-quality images based on natural language descriptions. However, it is shown that these models tend to favor specific social groups when prompted with neutral text descriptions (e.g., ‘a photo of a lawyer’). Following Zhao et al. (2021), we study the effect on the diversity of the generated images when adding ethical intervention that supports equitable judgment (e.g., ‘if all individuals can be a lawyer irrespective of their gender’) in the input prompts. To this end, we introduce an Ethical NaTural Language Interventions in Text-to-Image GENeration (ENTIGEN) benchmark dataset to evaluate the change in image generations conditional on ethical interventions across three social axes – gender, skin color, and culture. Through CLIP-based and human evaluation on minDALL.E, DALL.E-mini and Stable Diffusion, we find that the model generations cover diverse social groups while preserving the image quality. In some cases, the generations would be anti-stereotypical (e.g., models tend to create images with individuals that are perceived as man when fed with prompts about makeup) in the presence of ethical intervention. Preliminary studies indicate that a large change in the model predictions is triggered by certain phrases such as ‘irrespective of gender’ in the context of gender bias in the ethical interventions. We release code and annotated data at https://github.com/Hritikbansal/entigen_emnlp.

pdf bib
Towards a Unified Multi-Dimensional Evaluator for Text Generation
Ming Zhong | Yang Liu | Da Yin | Yuning Mao | Yizhu Jiao | Pengfei Liu | Chenguang Zhu | Heng Ji | Jiawei Han
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Multi-dimensional evaluation is the dominant paradigm for human evaluation in Natural Language Generation (NLG), i.e., evaluating the generated text from multiple explainable dimensions, such as coherence and fluency. However, automatic evaluation in NLG is still dominated by similarity-based metrics, and we lack a reliable framework for a more comprehensive evaluation of advanced models. In this paper, we propose a unified multi-dimensional evaluator UniEval for NLG. We re-frame NLG evaluation as a Boolean Question Answering (QA) task, and by guiding the model with different questions, we can use one evaluator to evaluate from multiple dimensions. Furthermore, thanks to the unified Boolean QA format, we are able to introduce an intermediate learning phase that enables UniEval to incorporate external knowledge from multiple related tasks and gain further improvement. Experiments on three typical NLG tasks show that UniEval correlates substantially better with human judgments than existing metrics. Specifically, compared to the top-performing unified evaluators, UniEval achieves a 23% higher correlation on text summarization, and over 43% on dialogue response generation. Also, UniEval demonstrates a strong zero-shot learning ability for unseen evaluation dimensions and tasks. Source code, data, and all pre-trained evaluators are available at https://github.com/maszhongming/UniEval.

pdf bib
GeoMLAMA: Geo-Diverse Commonsense Probing on Multilingual Pre-Trained Language Models
Da Yin | Hritik Bansal | Masoud Monajatipoor | Liunian Harold Li | Kai-Wei Chang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Recent work has shown that Pre-trained Language Models (PLMs) store the relational knowledge learned from data and utilize it for performing downstream tasks. However, commonsense knowledge across different regions may vary. For instance, the color of bridal dress is white in American weddings whereas it is red in Chinese weddings. In this paper, we introduce a benchmark dataset, Geo-diverse Commonsense Multilingual Language Models Analysis (GeoMLAMA), for probing the diversity of the relational knowledge in multilingual PLMs. GeoMLAMA contains 3125 prompts in English, Chinese, Hindi, Persian, and Swahili, with a wide coverage of concepts shared by people from American, Chinese, Indian, Iranian and Kenyan cultures. We benchmark 11 standard multilingual PLMs on GeoMLAMA. Interestingly, we find that 1) larger multilingual PLMs variants do not necessarily store geo-diverse concepts better than its smaller variant; 2) multilingual PLMs are not intrinsically biased towards knowledge from the Western countries (the United States); 3) the native language of a country may not be the best language to probe its knowledge and 4) a language may better probe knowledge about a non-native country than its native country.

pdf bib
Proceedings of the Workshop on Multilingual Multimodal Learning
Emanuele Bugliarello | Kai-Wei Cheng | Desmond Elliott | Spandana Gella | Aishwarya Kamath | Liunian Harold Li | Fangyu Liu | Jonas Pfeiffer | Edoardo Maria Ponti | Krishna Srinivasan | Ivan Vulić | Yinfei Yang | Da Yin
Proceedings of the Workshop on Multilingual Multimodal Learning

2021

pdf bib
Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning
Da Yin | Liunian Harold Li | Ziniu Hu | Nanyun Peng | Kai-Wei Chang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Commonsense is defined as the knowledge on which everyone agrees. However, certain types of commonsense knowledge are correlated with culture and geographic locations and they are only shared locally. For example, the scenes of wedding ceremonies vary across regions due to different customs influenced by historical and religious factors. Such regional characteristics, however, are generally omitted in prior work. In this paper, we construct a Geo-Diverse Visual Commonsense Reasoning dataset (GD-VCR) to test vision-and-language models’ ability to understand cultural and geo-location-specific commonsense. In particular, we study two state-of-the-art Vision-and-Language models, VisualBERT and ViLBERT trained on VCR, a standard benchmark with images primarily from Western regions. We then evaluate how well the trained models can generalize to answering the questions in GD-VCR. We find that the performance of both models for non-Western regions including East Asia, South Asia, and Africa is significantly lower than that for Western region. We analyze the reasons behind the performance disparity and find that the performance gap is larger on QA pairs that: 1) are concerned with culture-related scenarios, e.g., weddings, religious activities, and festivals; 2) require high-level geo-diverse commonsense reasoning rather than low-order perception and recognition. Dataset and code are released at https://github.com/WadeYin9712/GD-VCR.

pdf bib
Everything Has a Cause: Leveraging Causal Inference in Legal Text Analysis
Xiao Liu | Da Yin | Yansong Feng | Yuting Wu | Dongyan Zhao
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Causal inference is the process of capturing cause-effect relationship among variables. Most existing works focus on dealing with structured data, while mining causal relationship among factors from unstructured data, like text, has been less examined, but is of great importance, especially in the legal domain. In this paper, we propose a novel Graph-based Causal Inference (GCI) framework, which builds causal graphs from fact descriptions without much human involvement and enables causal inference to facilitate legal practitioners to make proper decisions. We evaluate the framework on a challenging similar charge disambiguation task. Experimental results show that GCI can capture the nuance from fact descriptions among multiple confusing charges and provide explainable discrimination, especially in few-shot settings. We also observe that the causal knowledge contained in GCI can be effectively injected into powerful neural networks for better performance and interpretability.

pdf bib
QMSum: A New Benchmark for Query-based Multi-domain Meeting Summarization
Ming Zhong | Da Yin | Tao Yu | Ahmad Zaidi | Mutethia Mutuma | Rahul Jha | Ahmed Hassan Awadallah | Asli Celikyilmaz | Yang Liu | Xipeng Qiu | Dragomir Radev
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Meetings are a key component of human collaboration. As increasing numbers of meetings are recorded and transcribed, meeting summaries have become essential to remind those who may or may not have attended the meetings about the key decisions made and the tasks to be completed. However, it is hard to create a single short summary that covers all the content of a long meeting involving multiple people and topics. In order to satisfy the needs of different types of users, we define a new query-based multi-domain meeting summarization task, where models have to select and summarize relevant spans of meetings in response to a query, and we introduce QMSum, a new benchmark for this task. QMSum consists of 1,808 query-summary pairs over 232 meetings in multiple domains. Besides, we investigate a locate-then-summarize method and evaluate a set of strong summarization baselines on the task. Experimental results and manual analysis reveal that QMSum presents significant challenges in long meeting summarization for future research. Dataset is available at https://github.com/Yale-LILY/QMSum.

2020

pdf bib
SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics
Da Yin | Tao Meng | Kai-Wei Chang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

We propose SentiBERT, a variant of BERT that effectively captures compositional sentiment semantics. The model incorporates contextualized representation with binary constituency parse tree to capture semantic composition. Comprehensive experiments demonstrate that SentiBERT achieves competitive performance on phrase-level sentiment classification. We further demonstrate that the sentiment composition learned from the phrase-level annotations on SST can be transferred to other sentiment analysis tasks as well as related tasks, such as emotion classification tasks. Moreover, we conduct ablation studies and design visualization methods to understand SentiBERT. We show that SentiBERT is better than baseline approaches in capturing negation and the contrastive relation and model the compositional sentiment semantics.

pdf bib
What Does BERT with Vision Look At?
Liunian Harold Li | Mark Yatskar | Da Yin | Cho-Jui Hsieh | Kai-Wei Chang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Pre-trained visually grounded language models such as ViLBERT, LXMERT, and UNITER have achieved significant performance improvement on vision-and-language tasks but what they learn during pre-training remains unclear. In this work, we demonstrate that certain attention heads of a visually grounded language model actively ground elements of language to image regions. Specifically, some heads can map entities to image regions, performing the task known as entity grounding. Some heads can even detect the syntactic relations between non-entity words and image regions, tracking, for example, associations between verbs and regions corresponding to their arguments. We denote this ability as syntactic grounding. We verify grounding both quantitatively and qualitatively, using Flickr30K Entities as a testbed.

2019

pdf bib
A Soft Label Strategy for Target-Level Sentiment Classification
Da Yin | Xiao Liu | Xiuyu Wu | Baobao Chang
Proceedings of the Tenth Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis

In this paper, we propose a soft label approach to target-level sentiment classification task, in which a history-based soft labeling model is proposed to measure the possibility of a context word as an opinion word. We also apply a convolution layer to extract local active features, and introduce positional weights to take relative distance information into consideration. In addition, we obtain more informative target representation by training with context tokens together to make deeper interaction between target and context tokens. We conduct experiments on SemEval 2014 datasets and the experimental results show that our approach significantly outperforms previous models and gives state-of-the-art results on these datasets.