Daiki Shirafuji


2025

pdf bib
Bias Vector: Mitigating Biases in Language Models with Task Arithmetic Approach
Daiki Shirafuji | Makoto Takenaka | Shinya Taguchi
Proceedings of the 31st International Conference on Computational Linguistics

The use of language models (LMs) has increased considerably in recent years, and the biases and stereotypes in training data that are reflected in the LM outputs are causing social problems. In this paper, inspired by the task arithmetic, we propose the “Bias Vector” method for the mitigation of these LM biases. The Bias Vector method does not require manually created debiasing data. The three main steps of our approach involve: (1) continual training the pre-trained LMs on biased data using masked language modeling; (2) constructing the Bias Vector as the difference between the weights of the biased LMs and those of pre-trained LMs; and (3) subtracting the Bias Vector from the weights of the pre-trained LMs for debiasing. We evaluated the Bias Vector method on the SEAT across three LMs and confirmed an average improvement of 0.177 points. We demonstrated that the Bias Vector method does not degrade the LM performance on downstream tasks in the GLUE benchmark. In addition, we examined the impact of scaling factors, which control the magnitudes of Bias Vectors, with effect sizes on the SEAT and conducted a comprehensive evaluation of our debiased LMs across both the SEAT and GLUE benchmarks.