Damai Dai


2022

pdf bib
StableMoE: Stable Routing Strategy for Mixture of Experts
Damai Dai | Li Dong | Shuming Ma | Bo Zheng | Zhifang Sui | Baobao Chang | Furu Wei
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The Mixture-of-Experts (MoE) technique can scale up the model size of Transformers with an affordable computational overhead. We point out that existing learning-to-route MoE methods suffer from the routing fluctuation issue, i.e., the target expert of the same input may change along with training, but only one expert will be activated for the input during inference. The routing fluctuation tends to harm sample efficiency because the same input updates different experts but only one is finally used. In this paper, we propose StableMoE with two training stages to address the routing fluctuation problem. In the first training stage, we learn a balanced and cohesive routing strategy and distill it into a lightweight router decoupled from the backbone model. In the second training stage, we utilize the distilled router to determine the token-to-expert assignment and freeze it for a stable routing strategy. We validate our method on language modeling and multilingual machine translation. The results show that StableMoE outperforms existing MoE methods in terms of both convergence speed and performance.

pdf bib
Knowledge Neurons in Pretrained Transformers
Damai Dai | Li Dong | Yaru Hao | Zhifang Sui | Baobao Chang | Furu Wei
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large-scale pretrained language models are surprisingly good at recalling factual knowledge presented in the training corpus. In this paper, we present preliminary studies on how factual knowledge is stored in pretrained Transformers by introducing the concept of knowledge neurons. Specifically, we examine the fill-in-the-blank cloze task for BERT. Given a relational fact, we propose a knowledge attribution method to identify the neurons that express the fact. We find that the activation of such knowledge neurons is positively correlated to the expression of their corresponding facts. In our case studies, we attempt to leverage knowledge neurons to edit (such as update, and erase) specific factual knowledge without fine-tuning. Our results shed light on understanding the storage of knowledge within pretrained Transformers.

pdf bib
Hierarchical Curriculum Learning for AMR Parsing
Peiyi Wang | Liang Chen | Tianyu Liu | Damai Dai | Yunbo Cao | Baobao Chang | Zhifang Sui
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Abstract Meaning Representation (AMR) parsing aims to translate sentences to semantic representation with a hierarchical structure, and is recently empowered by pretrained sequence-to-sequence models. However, there exists a gap between their flat training objective (i.e., equally treats all output tokens) and the hierarchical AMR structure, which limits the model generalization. To bridge this gap, we propose a Hierarchical Curriculum Learning (HCL) framework with Structure-level (SC) and Instance-level Curricula (IC). SC switches progressively from core to detail AMR semantic elements while IC transits from structure-simple to -complex AMR instances during training. Through these two warming-up processes, HCL reduces the difficulty of learning complex structures, thus the flat model can better adapt to the AMR hierarchy. Extensive experiments on AMR2.0, AMR3.0, structure-complex and out-of-distribution situations verify the effectiveness of HCL.

2021

pdf bib
基于词信息嵌入的汉语构词结构识别研究(Chinese Word-Formation Prediction based on Representations of Word-Related Features)
Hua Zheng (郑婳) | Yaqi Yan (殷雅琦) | Yue Wang (王悦) | Damai Dai (代达劢) | Yang Liu (刘扬)
Proceedings of the 20th Chinese National Conference on Computational Linguistics

作为一种意合型语言,汉语中的构词结构刻画了构词成分之间的组合关系,是认知、理解词义的关键。在中文信息处理领域,此前的构词结构识别工作大多沿用句法层面的粗粒度标签,且主要基于上下文等词间信息建模,忽略了语素义、词义等词内信息对构词结构识别的作用。本文采用语言学视域下的构词结构标签体系,构建汉语构词结构及相关信息数据集,提出了一种基于Bi-LSTM和Self-attention的模型,以此来探究词内、词间等多方面信息对构词结构识别的潜在影响和能达到的性能。实验取得了良好的预测效果,准确率77.87%,F1值78.36%;同时,对比测试揭示,词内的语素义信息对构词结构识别具有显著的贡献,而词间的上下文信息贡献较弱且带有较强的不稳定性。该预测方法与数据集,将为中文信息处理的多种任务,如语素和词结构分析、词义识别与生成、语言文字研究与词典编纂等提供新的观点和方案。

pdf bib
Leveraging Word-Formation Knowledge for Chinese Word Sense Disambiguation
Hua Zheng | Lei Li | Damai Dai | Deli Chen | Tianyu Liu | Xu Sun | Yang Liu
Findings of the Association for Computational Linguistics: EMNLP 2021

In parataxis languages like Chinese, word meanings are constructed using specific word-formations, which can help to disambiguate word senses. However, such knowledge is rarely explored in previous word sense disambiguation (WSD) methods. In this paper, we propose to leverage word-formation knowledge to enhance Chinese WSD. We first construct a large-scale Chinese lexical sample WSD dataset with word-formations. Then, we propose a model FormBERT to explicitly incorporate word-formations into sense disambiguation. To further enhance generalizability, we design a word-formation predictor module in case word-formation annotations are unavailable. Experimental results show that our method brings substantial performance improvement over strong baselines.

pdf bib
Inductively Representing Out-of-Knowledge-Graph Entities by Optimal Estimation Under Translational Assumptions
Damai Dai | Hua Zheng | Fuli Luo | Pengcheng Yang | Tianyu Liu | Zhifang Sui | Baobao Chang
Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021)

Conventional Knowledge Graph Completion (KGC) assumes that all test entities appear during training. However, in real-world scenarios, Knowledge Graphs (KG) evolve fast with out-of-knowledge-graph (OOKG) entities added frequently, and we need to efficiently represent these entities. Most existing Knowledge Graph Embedding (KGE) methods cannot represent OOKG entities without costly retraining on the whole KG. To enhance efficiency, we propose a simple and effective method that inductively represents OOKG entities by their optimal estimation under translational assumptions. Moreover, given pretrained embeddings of the in-knowledge-graph (IKG) entities, our method even needs no additional learning. Experimental results on two KGC tasks with OOKG entities show that our method outperforms the previous methods by a large margin with higher efficiency.

pdf bib
Decompose, Fuse and Generate: A Formation-Informed Method for Chinese Definition Generation
Hua Zheng | Damai Dai | Lei Li | Tianyu Liu | Zhifang Sui | Baobao Chang | Yang Liu
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

In this paper, we tackle the task of Definition Generation (DG) in Chinese, which aims at automatically generating a definition for a word. Most existing methods take the source word as an indecomposable semantic unit. However, in parataxis languages like Chinese, word meanings can be composed using the word formation process, where a word (“桃花”, peach-blossom) is formed by formation components (“桃”, peach; “花”, flower) using a formation rule (Modifier-Head). Inspired by this process, we propose to enhance DG with word formation features. We build a formation-informed dataset, and propose a model DeFT, which Decomposes words into formation features, dynamically Fuses different features through a gating mechanism, and generaTes word definitions. Experimental results show that our method is both effective and robust.

2019

pdf bib
Learning to Control the Fine-grained Sentiment for Story Ending Generation
Fuli Luo | Damai Dai | Pengcheng Yang | Tianyu Liu | Baobao Chang | Zhifang Sui | Xu Sun
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Automatic story ending generation is an interesting and challenging task in natural language generation. Previous studies are mainly limited to generate coherent, reasonable and diversified story endings, and few works focus on controlling the sentiment of story endings. This paper focuses on generating a story ending which meets the given fine-grained sentiment intensity. There are two major challenges to this task. First is the lack of story corpus which has fine-grained sentiment labels. Second is the difficulty of explicitly controlling sentiment intensity when generating endings. Therefore, we propose a generic and novel framework which consists of a sentiment analyzer and a sentimental generator, respectively addressing the two challenges. The sentiment analyzer adopts a series of methods to acquire sentiment intensities of the story dataset. The sentimental generator introduces the sentiment intensity into decoder via a Gaussian Kernel Layer to control the sentiment of the output. To the best of our knowledge, this is the first endeavor to control the fine-grained sentiment for story ending generation without manually annotating sentiment labels. Experiments show that our proposed framework can generate story endings which are not only more coherent and fluent but also able to meet the given sentiment intensity better.