Damián Blasi

Also published as: Damian Blasi


2023

pdf bib
On the Interpretability and Significance of Bias Metrics in Texts: a PMI-based Approach
Francisco Valentini | Germán Rosati | Damián Blasi | Diego Fernandez Slezak | Edgar Altszyler
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

In recent years, word embeddings have been widely used to measure biases in texts. Even if they have proven to be effective in detecting a wide variety of biases, metrics based on word embeddings lack transparency and interpretability. We analyze an alternative PMI-based metric to quantify biases in texts. It can be expressed as a function of conditional probabilities, which provides a simple interpretation in terms of word co-occurrences. We also prove that it can be approximated by an odds ratio, which allows estimating confidence intervals and statistical significance of textual biases. This approach produces similar results to metrics based on word embeddings when capturing gender gaps of the real world embedded in large corpora.

pdf bib
Grambank’s Typological Advances Support Computational Research on Diverse Languages
Hannah J. Haynie | Damián Blasi | Hedvig Skirgård | Simon J. Greenhill | Quentin D. Atkinson | Russell D. Gray
Proceedings of the 5th Workshop on Research in Computational Linguistic Typology and Multilingual NLP

Of approximately 7,000 languages around the world, only a handful have abundant computational resources. Extending the reach of language technologies to diverse, less-resourced languages is important for tackling the challenges of digital equity and inclusion. Here we introduce the Grambank typological database as a resource to support such efforts. To date, work that uses typological data to extend computational research to less-resourced languages has relied on cross-linguistic morphosyntax datasets that are sparsely populated, use categorical coding that can be difficult to interpret, and introduce redundant information across features. Grambank presents similar information (e.g. word order, grammatical relation marking, constructions like interrogatives and negation), but is designed to avoid several disadvantages of legacy typological resources. Grambank’s 195 features encode basic information about morphology and syntax for 2,467 languages. 83% of these languages are annotated for at least 100 features. By implementing binary coding for most features and curating the dataset to avoid logical dependencies, Grambank presents information in a user-friendly format for computational applications. The scale, completeness, reliability, format, and documentation of Grambank make it a useful resource for linguistically-informed models, cross-lingual NLP, and research targeting less-resourced languages.

2022

pdf bib
Systematic Inequalities in Language Technology Performance across the World’s Languages
Damian Blasi | Antonios Anastasopoulos | Graham Neubig
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Natural language processing (NLP) systems have become a central technology in communication, education, medicine, artificial intelligence, and many other domains of research and development. While the performance of NLP methods has grown enormously over the last decade, this progress has been restricted to a minuscule subset of the world’s 6,500 languages. We introduce a framework for estimating the global utility of language technologies as revealed in a comprehensive snapshot of recent publications in NLP. Our analyses involve the field at large, but also more in-depth studies on both user-facing technologies (machine translation, language understanding, question answering, text-to-speech synthesis) as well as foundational NLP tasks (dependency parsing, morphological inflection). In the process, we (1) quantify disparities in the current state of NLP research, (2) explore some of its associated societal and academic factors, and (3) produce tailored recommendations for evidence-based policy making aimed at promoting more global and equitable language technologies. Data and code to reproduce the findings discussed in this paper areavailable on GitHub (https://github.com/neubig/globalutility).

2021

pdf bib
On the Relationships Between the Grammatical Genders of Inanimate Nouns and Their Co-Occurring Adjectives and Verbs
Adina Williams | Ryan Cotterell | Lawrence Wolf-Sonkin | Damián Blasi | Hanna Wallach
Transactions of the Association for Computational Linguistics, Volume 9

We use large-scale corpora in six different gendered languages, along with tools from NLP and information theory, to test whether there is a relationship between the grammatical genders of inanimate nouns and the adjectives used to describe those nouns. For all six languages, we find that there is a statistically significant relationship. We also find that there are statistically significant relationships between the grammatical genders of inanimate nouns and the verbs that take those nouns as direct objects, as indirect objects, and as subjects. We defer deeper investigation of these relationships for future work.

pdf bib
Finding Concept-specific Biases in Form–Meaning Associations
Tiago Pimentel | Brian Roark | Søren Wichmann | Ryan Cotterell | Damián Blasi
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

This work presents an information-theoretic operationalisation of cross-linguistic non-arbitrariness. It is not a new idea that there are small, cross-linguistic associations between the forms and meanings of words. For instance, it has been claimed (Blasi et al., 2016) that the word for “tongue” is more likely than chance to contain the phone [l]. By controlling for the influence of language family and geographic proximity within a very large concept-aligned, cross-lingual lexicon, we extend methods previously used to detect within language non-arbitrariness (Pimentel et al., 2019) to measure cross-linguistic associations. We find that there is a significant effect of non-arbitrariness, but it is unsurprisingly small (less than 0.5% on average according to our information-theoretic estimate). We also provide a concept-level analysis which shows that a quarter of the concepts considered in our work exhibit a significant level of cross-linguistic non-arbitrariness. In sum, the paper provides new methods to detect cross-linguistic associations at scale, and confirms their effects are minor.

pdf bib
How (Non-)Optimal is the Lexicon?
Tiago Pimentel | Irene Nikkarinen | Kyle Mahowald | Ryan Cotterell | Damián Blasi
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

The mapping of lexical meanings to wordforms is a major feature of natural languages. While usage pressures might assign short words to frequent meanings (Zipf’s law of abbreviation), the need for a productive and open-ended vocabulary, local constraints on sequences of symbols, and various other factors all shape the lexicons of the world’s languages. Despite their importance in shaping lexical structure, the relative contributions of these factors have not been fully quantified. Taking a coding-theoretic view of the lexicon and making use of a novel generative statistical model, we define upper bounds for the compressibility of the lexicon under various constraints. Examining corpora from 7 typologically diverse languages, we use those upper bounds to quantify the lexicon’s optimality and to explore the relative costs of major constraints on natural codes. We find that (compositional) morphology and graphotactics can sufficiently account for most of the complexity of natural codes—as measured by code length.

pdf bib
Evaluating Word Embeddings with Categorical Modularity
Sílvia Casacuberta | Karina Halevy | Damián Blasi
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Modeling the Unigram Distribution
Irene Nikkarinen | Tiago Pimentel | Damián Blasi | Ryan Cotterell
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
A surprisal–duration trade-off across and within the world’s languages
Tiago Pimentel | Clara Meister | Elizabeth Salesky | Simone Teufel | Damián Blasi | Ryan Cotterell
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

While there exist scores of natural languages, each with its unique features and idiosyncrasies, they all share a unifying theme: enabling human communication. We may thus reasonably predict that human cognition shapes how these languages evolve and are used. Assuming that the capacity to process information is roughly constant across human populations, we expect a surprisal–duration trade-off to arise both across and within languages. We analyse this trade-off using a corpus of 600 languages and, after controlling for several potential confounds, we find strong supporting evidence in both settings. Specifically, we find that, on average, phones are produced faster in languages where they are less surprising, and vice versa. Further, we confirm that more surprising phones are longer, on average, in 319 languages out of the 600. We thus conclude that there is strong evidence of a surprisal–duration trade-off in operation, both across and within the world’s languages.

2020

pdf bib
Speakers Fill Lexical Semantic Gaps with Context
Tiago Pimentel | Rowan Hall Maudslay | Damian Blasi | Ryan Cotterell
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Lexical ambiguity is widespread in language, allowing for the reuse of economical word forms and therefore making language more efficient. If ambiguous words cannot be disambiguated from context, however, this gain in efficiency might make language less clear—resulting in frequent miscommunication. For a language to be clear and efficiently encoded, we posit that the lexical ambiguity of a word type should correlate with how much information context provides about it, on average. To investigate whether this is the case, we operationalise the lexical ambiguity of a word as the entropy of meanings it can take, and provide two ways to estimate this—one which requires human annotation (using WordNet), and one which does not (using BERT), making it readily applicable to a large number of languages. We validate these measures by showing that, on six high-resource languages, there are significant Pearson correlations between our BERT-based estimate of ambiguity and the number of synonyms a word has in WordNet (e.g. 𝜌 = 0.40 in English). We then test our main hypothesis—that a word’s lexical ambiguity should negatively correlate with its contextual uncertainty—and find significant correlations on all 18 typologically diverse languages we analyse. This suggests that, in the presence of ambiguity, speakers compensate by making contexts more informative.

2019

pdf bib
Meaning to Form: Measuring Systematicity as Information
Tiago Pimentel | Arya D. McCarthy | Damian Blasi | Brian Roark | Ryan Cotterell
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

A longstanding debate in semiotics centers on the relationship between linguistic signs and their corresponding semantics: is there an arbitrary relationship between a word form and its meaning, or does some systematic phenomenon pervade? For instance, does the character bigram ‘gl’ have any systematic relationship to the meaning of words like ‘glisten’, ‘gleam’ and ‘glow’? In this work, we offer a holistic quantification of the systematicity of the sign using mutual information and recurrent neural networks. We employ these in a data-driven and massively multilingual approach to the question, examining 106 languages. We find a statistically significant reduction in entropy when modeling a word form conditioned on its semantic representation. Encouragingly, we also recover well-attested English examples of systematic affixes. We conclude with the meta-point: Our approximate effect size (measured in bits) is quite small—despite some amount of systematicity between form and meaning, an arbitrary relationship and its resulting benefits dominate human language.

pdf bib
Is Word Segmentation Child’s Play in All Languages?
Georgia R. Loukatou | Steven Moran | Damian Blasi | Sabine Stoll | Alejandrina Cristia
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

When learning language, infants need to break down the flow of input speech into minimal word-like units, a process best described as unsupervised bottom-up segmentation. Proposed strategies include several segmentation algorithms, but only cross-linguistically robust algorithms could be plausible candidates for human word learning, since infants have no initial knowledge of the ambient language. We report on the stability in performance of 11 conceptually diverse algorithms on a selection of 8 typologically distinct languages. The results consist evidence that some segmentation algorithms are cross-linguistically valid, thus could be considered as potential strategies employed by all infants.

pdf bib
On the Distribution of Deep Clausal Embeddings: A Large Cross-linguistic Study
Damian Blasi | Ryan Cotterell | Lawrence Wolf-Sonkin | Sabine Stoll | Balthasar Bickel | Marco Baroni
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Embedding a clause inside another (“the girl [who likes cars [that run fast]] has arrived”) is a fundamental resource that has been argued to be a key driver of linguistic expressiveness. As such, it plays a central role in fundamental debates on what makes human language unique, and how they might have evolved. Empirical evidence on the prevalence and the limits of embeddings has however been based on either laboratory setups or corpus data of relatively limited size. We introduce here a collection of large, dependency-parsed written corpora in 17 languages, that allow us, for the first time, to capture clausal embedding through dependency graphs and assess their distribution. Our results indicate that there is no evidence for hard constraints on embedding depth: the tail of depth distributions is heavy. Moreover, although deeply embedded clauses tend to be shorter, suggesting processing load issues, complex sentences with many embeddings do not display a bias towards less deep embeddings. Taken together, the results suggest that deep embeddings are not disfavoured in written language. More generally, our study illustrates how resources and methods from latest-generation big-data NLP can provide new perspectives on fundamental questions in theoretical linguistics.

pdf bib
Quantifying the Semantic Core of Gender Systems
Adina Williams | Damian Blasi | Lawrence Wolf-Sonkin | Hanna Wallach | Ryan Cotterell
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Many of the world’s languages employ grammatical gender on the lexeme. For instance, in Spanish, house “casa” is feminine, whereas the word for paper “papel” is masculine. To a speaker of a genderless language, this categorization seems to exist with neither rhyme nor reason. But, is the association of nouns to gender classes truly arbitrary? In this work, we present the first large-scale investigation of the arbitrariness of gender assignment that uses canonical correlation analysis as a method for correlating the gender of inanimate nouns with their lexical semantic meaning. We find that the gender systems of 18 languages exhibit a significant correlation with an externally grounded definition of lexical semantics.

2018

pdf bib
Modeling infant segmentation of two morphologically diverse languages
Georgia-Rengina Loukatou | Sabine Stoll | Damian Blasi | Alejandrina Cristia
Actes de la Conférence TALN. Volume 1 - Articles longs, articles courts de TALN

A rich literature explores unsupervised segmentation algorithms infants could use to parse their input, mainly focusing on English, an analytic language where word, morpheme, and syllable boundaries often coincide. Synthetic languages, where words are multi-morphemic, may present unique difficulties for segmentation. Our study tests corpora of two languages selected to differ in the extent of complexity of their morphological structure, Chintang and Japanese. We use three conceptually diverse word segmentation algorithms and we evaluate them on both word- and morpheme-level representations. As predicted, results for the simpler Japanese are better than those for the more complex Chintang. However, the difference is small compared to the effect of the algorithm (with the lexical algorithm outperforming sub-lexical ones) and the level (scores were lower when evaluating on words versus morphemes). There are also important interactions between language, model, and evaluation level, which ought to be considered in future work.