Dan Iter


pdf bib
How Does In-Context Learning Help Prompt Tuning?
Simeng Sun | Yang Liu | Dan Iter | Chenguang Zhu | Mohit Iyyer
Findings of the Association for Computational Linguistics: EACL 2024

Fine-tuning large language models is becoming ever more impractical due to their rapidly-growing scale. This motivates the use of parameter-efficient adaptation methods such as prompt tuning (PT), which adds a small number of tunable embeddings to an otherwise frozen model, and in-context learning (ICL), in which demonstrations of the task are provided to the model in natural language without any additional training. Recently, (CITATION) propose “instruction prompt tuning” (IPT), which combines PT with ICL by concatenating a natural language demonstration with learned prompt embeddings. While all of these methods have proven effective on different tasks, how they interact with each other remains unexplored. In this paper, we empirically study when and how in-context examples improve prompt tuning by measuring the effectiveness of ICL, PT, and IPT on five text generation tasks with multiple base language models. We observe that (1) IPT does not always outperform PT, and in fact requires the in-context demonstration to be semantically similar to the test input to yield improvements; (2) PT is unstable and exhibits high variance, but combining PT and ICL (into IPT) consistently reduces variance across all five tasks; and(3) prompts learned for a specific source task via PT exhibit positive transfer when paired with in-context examples of a different target task. Our results offer actionable insights on choosing a suitable parameter-efficient adaptation method for a given task.

pdf bib
PEARL: Prompting Large Language Models to Plan and Execute Actions Over Long Documents
Simeng Sun | Yang Liu | Shuohang Wang | Dan Iter | Chenguang Zhu | Mohit Iyyer
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

Strategies such as chain-of-thought prompting improve the performance of large language models (LLMs) on complex reasoning tasks by decomposing input examples into intermediate steps. However, it remains unclear how to apply such methods to reason over long input documents, in which both the decomposition and the output of each intermediate step are non-trivial to obtain. In this work, we propose PEARL, a prompting framework to improve reasoning over long documents, which consists of three stages: action mining, plan formulation, and plan execution. More specifically, given a question about a long document, PEARL decomposes the question into a sequence of actions (e.g., SUMMARIZE, FIND_EVENT, FIND_RELATION) and then executes them over the document to obtain the answer. Each stage of PEARL is implemented via zero-shot or few-shot prompting of LLMs (in our work, GPT-4) with minimal human input. We evaluate PEARL on a challenging subset of the QuALITY dataset, which contains questions that require complex reasoning over long narrative texts. PEARL outperforms zero-shot and chain-of-thought prompting on this dataset, and ablation experiments show that each stage of PEARL is critical to its performance. Overall, PEARL is a first step towards leveraging LLMs to reason over long documents.


pdf bib
The Shifted and The Overlooked: A Task-oriented Investigation of User-GPT Interactions
Siru Ouyang | Shuohang Wang | Yang Liu | Ming Zhong | Yizhu Jiao | Dan Iter | Reid Pryzant | Chenguang Zhu | Heng Ji | Jiawei Han
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Recent progress in Large Language Models (LLMs) has produced models that exhibit remarkable performance across a variety of NLP tasks. However, it remains unclear whether the existing focus of NLP research accurately captures the genuine requirements of human users. This paper provides a comprehensive analysis of the divergence between academic research in NLP and the needs of real-world NLP applications via a large-scale collection of user-GPT conversations. We analyze a large-scale collection of real user queries to GPT. We compare these queries against existing NLP benchmark tasks and identify a significant gap between the tasks that users frequently request from LLMs and the tasks that are commonly studied in academic research. For example, we find that tasks such as “design” and “planning” are prevalent in user interactions but largely neglected or different from traditional NLP benchmarks. We investigate these overlooked tasks, dissect the practical challenges, and provide insights toward a roadmap to make LLMs better aligned with user needs.

pdf bib
G-Eval: NLG Evaluation using Gpt-4 with Better Human Alignment
Yang Liu | Dan Iter | Yichong Xu | Shuohang Wang | Ruochen Xu | Chenguang Zhu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

The quality of texts generated by natural language generation (NLG) systems is hard to measure automatically. Conventional reference-based metrics, such as BLEU and ROUGE, have been shown to have relatively low correlation with human judgments, especially for tasks that require creativity and diversity. Recent studies suggest using large language models (LLMs) as reference-free metrics for NLG evaluation, which have the benefit of being applicable to new tasks that lack human references. However, these LLM-based evaluators still have lower human correspondence than medium-size neural evaluators. In this work, we present G-Eval, a framework of using large language models with chain-of-thoughts (CoT) and a form-filling paradigm, to assess the quality of NLG outputs. We experiment with two generation tasks, text summarization and dialogue generation. We show that G-Eval with GPT-4 as the backbone model achieves a Spearman correlation of 0.514 with human on summarization task, outperforming all previous methods by a large margin. We also propose analysis on the behavior of LLM-based evaluators, and highlight the potential concern of LLM-based evaluators having a bias towards the LLM-generated texts.

pdf bib
Automatic Prompt Optimization with “Gradient Descent” and Beam Search
Reid Pryzant | Dan Iter | Jerry Li | Yin Lee | Chenguang Zhu | Michael Zeng
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Large Language Models (LLMs) have shown impressive performance as general purpose agents, but their abilities remain highly dependent on prompts which are hand written with onerous trial-and-error effort. We propose a simple and nonparametric solution to this problem, Prompt Optimization with Textual Gradients (ProTeGi), which is inspired by numerical gradient descent to automatically improve prompts, assuming access to training data and an LLM API. The algorithm uses minibatches of data to form natural language “gradients” that criticize the current prompt, much like how numerical gradients point in the direction of error ascent. The natural language gradients are then “propagated” into the prompt by editing the prompt in the opposite semantic direction of the gradient. These gradient descent steps are guided by a beam search and bandit selection procedure which significantly improves algorithmic efficiency. Preliminary results across three benchmark NLP tasks and the novel problem of LLM jailbreak detection suggest that Automatic Prompt Optimization can outperform prior prompt editing techniques and improve an initial prompt’s performance by up to 31%, by using data to rewrite vague task descriptions into more precise annotation instructions.

pdf bib
In-Context Demonstration Selection with Cross Entropy Difference
Dan Iter | Reid Pryzant | Ruochen Xu | Shuohang Wang | Yang Liu | Yichong Xu | Chenguang Zhu
Findings of the Association for Computational Linguistics: EMNLP 2023

Large language models (LLMs) can use in-context demonstrations to improve performance on zero-shot tasks. However, selecting the best in-context examples is challenging because model performance can vary widely depending on the selected examples. We present a cross-entropy difference (CED) method for selecting in-context demonstrations. Our method is based on the observation that the effectiveness of in-context demonstrations negatively correlates with the perplexity of the test example by a language model that was finetuned on that demonstration. We utilize parameter efficient finetuning to train small models on training data that are used for computing the cross-entropy difference between a test example and every candidate in-context demonstration. This metric is used to rank and select in-context demonstrations independently for each test input. We evaluate our method on a mix-domain dataset that combines 8 benchmarks, representing 4 text generation tasks, showing that CED for in-context demonstration selection can improve performance for a variety of LLMs over baseline selection methods.

pdf bib
Auto-Instruct: Automatic Instruction Generation and Ranking for Black-Box Language Models
Zhihan Zhang | Shuohang Wang | Wenhao Yu | Yichong Xu | Dan Iter | Qingkai Zeng | Yang Liu | Chenguang Zhu | Meng Jiang
Findings of the Association for Computational Linguistics: EMNLP 2023

Large language models (LLMs) can perform a wide range of tasks by following natural language instructions, without the necessity of task-specific fine-tuning. Unfortunately, the performance of LLMs is greatly influenced by the quality of these instructions, and manually writing effective instructions for each task is a laborious and subjective process. In this paper, we introduce Auto-Instruct, a novel method to automatically improve the quality of instructions provided to LLMs. Our method leverages the inherent generative ability of LLMs to produce diverse candidate instructions for a given task, and then ranks them using a scoring model trained on a variety of 575 existing NLP tasks. In experiments on 118 out-of-domain tasks, Auto-Instruct surpasses both human-written instructions and existing baselines of LLM-generated instructions. Furthermore, our method exhibits notable generalizability even with other LLMs that are not incorporated into its training process.

pdf bib
InheritSumm: A General, Versatile and Compact Summarizer by Distilling from GPT
Yichong Xu | Ruochen Xu | Dan Iter | Yang Liu | Shuohang Wang | Chenguang Zhu | Michael Zeng
Findings of the Association for Computational Linguistics: EMNLP 2023

While large models such as GPT-3 demonstrate exceptional performance in zeroshot and fewshot summarization tasks, their extensive serving and fine-tuning costs hinder their utilization in various applications. Conversely, previous studies have found that although automatic metrics tend to favor smaller fine-tuned models, the quality of the summaries they generate is inferior to that of larger models like GPT-3 when assessed by human evaluators. To address this issue, we propose InheritSumm, a versatile and compact summarization model derived from GPT-3.5 through distillation. InheritSumm not only exhibits comparable zeroshot and fewshot summarization capabilities to GPT-3.5 but is also sufficiently compact for fine-tuning purposes. Experimental results demonstrate that InheritSumm achieves similar or superior performance to GPT-3.5 in zeroshot and fewshot settings. Furthermore, it outperforms the previously established best small models in both prefix-tuning and full-data fine-tuning scenarios.

pdf bib
LMGQS: A Large-scale Dataset for Query-focused Summarization
Ruochen Xu | Song Wang | Yang Liu | Shuohang Wang | Yichong Xu | Dan Iter | Pengcheng He | Chenguang Zhu | Michael Zeng
Findings of the Association for Computational Linguistics: EMNLP 2023

Query-focused summarization (QFS) aims to extract or generate a summary of an input document that directly answers or is relevant to a given query. The lack of large-scale datasets in the form of documents, queries, and summaries has hindered model development in this area. In contrast, multiple large-scale high-quality datasets for generic summarization exist. We hypothesize that there is a hidden query for each summary sentence in a generic summarization annotation, and we utilize a large-scale pretrained language model to recover it. In this way, we convert four generic summarization benchmarks into a new QFS benchmark dataset, LMGQS, which consists of over 1 million document-query-summary samples. We thoroughly investigate the properties of our proposed dataset and establish baselines with state-of-the-art summarization models. By fine-tuning a language model on LMGQS, we achieve state-of-the-art zero-shot and supervised performance on multiple existing QFS benchmarks, demonstrating the high quality and diversity of LMGQS.


pdf bib
The Trade-offs of Domain Adaptation for Neural Language Models
David Grangier | Dan Iter
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

This work connects language model adaptation with concepts of machine learning theory. We consider a training setup with a large out-of-domain set and a small in-domain set. We derive how the benefit of training a model on either set depends on the size of the sets and the distance between their underlying distributions. We analyze how out-of-domain pre-training before in-domain fine-tuning achieves better generalization than either solution independently. Finally, we present how adaptation techniques based on data selection, such as importance sampling, intelligent data selection and influence functions, can be presented in a common framework which highlights their similarity and also their subtle differences.


pdf bib
Focus on what matters: Applying Discourse Coherence Theory to Cross Document Coreference
William Held | Dan Iter | Dan Jurafsky
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Performing event and entity coreference resolution across documents vastly increases the number of candidate mentions, making it intractable to do the full n2 pairwise comparisons. Existing approaches simplify by considering coreference only within document clusters, but this fails to handle inter-cluster coreference, common in many applications. As a result cross-document coreference algorithms are rarely applied to downstream tasks. We draw on an insight from discourse coherence theory: potential coreferences are constrained by the reader’s discourse focus. We model the entities/events in a reader’s focus as a neighborhood within a learned latent embedding space which minimizes the distance between mentions and the centroids of their gold coreference clusters. We then use these neighborhoods to sample only hard negatives to train a fine-grained classifier on mention pairs and their local discourse features. Our approach achieves state-of-the-art results for both events and entities on the ECB+, Gun Violence, Football Coreference, and Cross-Domain Cross-Document Coreference corpora. Furthermore, training on multiple corpora improves average performance across all datasets by 17.2 F1 points, leading to a robust coreference resolution model that is now feasible to apply to downstream tasks.


pdf bib
Entity Attribute Relation Extraction with Attribute-Aware Embeddings
Dan Iter | Xiao Yu | Fangtao Li
Proceedings of Deep Learning Inside Out (DeeLIO): The First Workshop on Knowledge Extraction and Integration for Deep Learning Architectures

Entity-attribute relations are a fundamental component for building large-scale knowledge bases, which are widely employed in modern search engines. However, most such knowledge bases are manually curated, covering only a small fraction of all attributes, even for common entities. To improve the precision of model-based entity-attribute extraction, we propose attribute-aware embeddings, which embeds entities and attributes in the same space by the similarity of their attributes. Our model, EANET, learns these embeddings by representing entities as a weighted sum of their attributes and concatenates these embeddings to mention level features. EANET achieves up to 91% classification accuracy, outperforming strong baselines and achieves 83% precision on manually labeled high confidence extractions, outperforming Biperpedia (Gupta et al., 2014), a previous state-of-the-art for large scale entity-attribute extraction.

pdf bib
Pretraining with Contrastive Sentence Objectives Improves Discourse Performance of Language Models
Dan Iter | Kelvin Guu | Larry Lansing | Dan Jurafsky
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Recent models for unsupervised representation learning of text have employed a number of techniques to improve contextual word representations but have put little focus on discourse-level representations. We propose Conpono, an inter-sentence objective for pretraining language models that models discourse coherence and the distance between sentences. Given an anchor sentence, our model is trained to predict the text k sentences away using a sampled-softmax objective where the candidates consist of neighboring sentences and sentences randomly sampled from the corpus. On the discourse representation benchmark DiscoEval, our model improves over the previous state-of-the-art by up to 13% and on average 4% absolute across 7 tasks. Our model is the same size as BERT-Base, but outperforms the much larger BERT-Large model and other more recent approaches that incorporate discourse. We also show that Conpono yields gains of 2%-6% absolute even for tasks that do not explicitly evaluate discourse: textual entailment (RTE), common sense reasoning (COPA) and reading comprehension (ReCoRD).


pdf bib
Automatic Detection of Incoherent Speech for Diagnosing Schizophrenia
Dan Iter | Jong Yoon | Dan Jurafsky
Proceedings of the Fifth Workshop on Computational Linguistics and Clinical Psychology: From Keyboard to Clinic

Schizophrenia is a mental disorder which afflicts an estimated 0.7% of adults world wide. It affects many areas of mental function, often evident from incoherent speech. Diagnosing schizophrenia relies on subjective judgments resulting in disagreements even among trained clinicians. Recent studies have proposed the use of natural language processing for diagnosis by drawing on automatically-extracted linguistic features like discourse coherence and lexicon. Here, we present the first benchmark comparison of previously proposed coherence models for detecting symptoms of schizophrenia and evaluate their performance on a new dataset of recorded interviews between subjects and clinicians. We also present two alternative coherence metrics based on modern sentence embedding techniques that outperform the previous methods on our dataset. Lastly, we propose a novel computational model for reference incoherence based on ambiguous pronoun usage and show that it is a highly predictive feature on our data. While the number of subjects is limited in this pilot study, our results suggest new directions for diagnosing common symptoms of schizophrenia.

pdf bib
FrameIt: Ontology Discovery for Noisy User-Generated Text
Dan Iter | Alon Halevy | Wang-Chiew Tan
Proceedings of the 2018 EMNLP Workshop W-NUT: The 4th Workshop on Noisy User-generated Text

A common need of NLP applications is to extract structured data from text corpora in order to perform analytics or trigger an appropriate action. The ontology defining the structure is typically application dependent and in many cases it is not known a priori. We describe the FrameIt System that provides a workflow for (1) quickly discovering an ontology to model a text corpus and (2) learning an SRL model that extracts the instances of the ontology from sentences in the corpus. FrameIt exploits data that is obtained in the ontology discovery phase as weak supervision data to bootstrap the SRL model and then enables the user to refine the model with active learning. We present empirical results and qualitative analysis of the performance of FrameIt on three corpora of noisy user-generated text.