Target-Oriented Multimodal Sentiment Classification (TMSC) aims to perform sentiment polarity on a target jointly considering its corresponding multiple modalities including text, image, and others. Current researches mainly work on either of two types of targets in a decentralized manner. One type is entity, such as a person name, a location name, etc. and the other is aspect, such as ‘food’, ‘service’, etc. We believe that this target type based division in task modelling is not necessary because the sentiment polarity of the specific target is not governed by its type but its context. For this reason, we propose a unified model for target-oriented multimodal sentiment classification, so called UnifiedTMSC. It is prompt-based language modelling and performs well on four datasets spanning the above two target types. Specifically, we design descriptive prompt paraphrasing to reformulate TMSC task via (1) task paraphrasing, which obtains paraphrased prompts based on the task description through a paraphrasing rule, and (2) image prefix tuning, which optimizes a small continuous image vector throughout the multimodal representation space of text and images. Conducted on two entity-level multimodal datasets: Twitter-2015 and Twitter-2017, and two aspect-level multimodal datasets: Multi-ZOL and MASAD, the experimental results show the effectiveness of our UnifiedTMSC.
This paper describes USTC-NELSLIP’s submissions to the IWSLT 2022 Offline Speech Translation task, including speech translation of talks from English to German, English to Chinese and English to Japanese. We describe both cascaded architectures and end-to-end models which can directly translate source speech into target text. In the cascaded condition, we investigate the effectiveness of different model architectures with robust training and achieve 2.72 BLEU improvements over last year’s optimal system on MuST-C English-German test set. In the end-to-end condition, we build models based on Transformer and Conformer architectures, achieving 2.26 BLEU improvements over last year’s optimal end-to-end system. The end-to-end system has obtained promising results, but it is still lagging behind our cascaded models.
We introduce the well-established social scientific concept of social solidarity and its contestation, anti-solidarity, as a new problem setting to supervised machine learning in NLP to assess how European solidarity discourses changed before and after the COVID-19 outbreak was declared a global pandemic. To this end, we annotate 2.3k English and German tweets for (anti-)solidarity expressions, utilizing multiple human annotators and two annotation approaches (experts vs. crowds). We use these annotations to train a BERT model with multiple data augmentation strategies. Our augmented BERT model that combines both expert and crowd annotations outperforms the baseline BERT classifier trained with expert annotations only by over 25 points, from 58% macro-F1 to almost 85%. We use this high-quality model to automatically label over 270k tweets between September 2019 and December 2020. We then assess the automatically labeled data for how statements related to European (anti-)solidarity discourses developed over time and in relation to one another, before and during the COVID-19 crisis. Our results show that solidarity became increasingly salient and contested during the crisis. While the number of solidarity tweets remained on a higher level and dominated the discourse in the scrutinized time frame, anti-solidarity tweets initially spiked, then decreased to (almost) pre-COVID-19 values before rising to a stable higher level until the end of 2020.
This paper describes USTC-NELSLIP’s submissions to the IWSLT2021 Simultaneous Speech Translation task. We proposed a novel simultaneous translation model, Cross-Attention Augmented Transducer (CAAT), which extends conventional RNN-T to sequence-to-sequence tasks without monotonic constraints, e.g., simultaneous translation. Experiments on speech-to-text (S2T) and text-to-text (T2T) simultaneous translation tasks shows CAAT achieves better quality-latency trade-offs compared to wait-k, one of the previous state-of-the-art approaches. Based on CAAT architecture and data augmentation, we build S2T and T2T simultaneous translation systems in this evaluation campaign. Compared to last year’s optimal systems, our S2T simultaneous translation system improves by an average of 11.3 BLEU for all latency regimes, and our T2T simultaneous translation system improves by an average of 4.6 BLEU.
This paper proposes a novel architecture, Cross Attention Augmented Transducer (CAAT), for simultaneous translation. The framework aims to jointly optimize the policy and translation models. To effectively consider all possible READ-WRITE simultaneous translation action paths, we adapt the online automatic speech recognition (ASR) model, RNN-T, but remove the strong monotonic constraint, which is critical for the translation task to consider reordering. To make CAAT work, we introduce a novel latency loss whose expectation can be optimized by a forward-backward algorithm. We implement CAAT with Transformer while the general CAAT architecture can also be implemented with other attention-based encoder-decoder frameworks. Experiments on both speech-to-text (S2T) and text-to-text (T2T) simultaneous translation tasks show that CAAT achieves significantly better latency-quality trade-offs compared to the state-of-the-art simultaneous translation approaches.
This paper describes the USTC-NEL (short for ”National Engineering Laboratory for Speech and Language Information Processing University of science and technology of china”) system to the speech translation task of the IWSLT Evaluation 2018. The system is a conventional pipeline system which contains 3 modules: speech recognition, post-processing and machine translation. We train a group of hybrid-HMM models for our speech recognition, and for machine translation we train transformer based neural machine translation models with speech recognition output style text as input. Experiments conducted on the IWSLT 2018 task indicate that, compared to baseline system from KIT, our system achieved 14.9 BLEU improvement.