Dan Zhao
2024
Quantized Side Tuning: Fast and Memory-Efficient Tuning of Quantized Large Language Models
Zhengxin Zhang
|
Dan Zhao
|
Xupeng Miao
|
Gabriele Oliaro
|
Zhihao Zhang
|
Qing Li
|
Yong Jiang
|
Zhihao Jia
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Finetuning large language models (LLMs) has been empirically effective on a variety of downstream tasks. Existing approaches to finetuning an LLM either focus on parameter-efficient finetuning, which only updates a small number of trainable parameters, or attempt to reduce the memory footprint during the training phase of the finetuning. Typically, the memory footprint during finetuning stems from three contributors: model weights, optimizer states, and intermediate activations. However, existing works still require considerable memory, and none can simultaneously mitigate the memory footprint of all three sources. In this paper, we present quantized side tuing (QST), which enables memory-efficient and fast finetuning of LLMs by operating through a dual-stage process. First, QST quantizes an LLM’s model weights into 4-bit to reduce the memory footprint of the LLM’s original weights. Second, QST introduces a side network separated from the LLM, which utilizes the hidden states of the LLM to make task-specific predictions. Using a separate side network avoids performing back-propagation through the LLM, thus reducing the memory requirement of the intermediate activations. Finally, QST leverages several low-rank adaptors and gradient-free downsample modules to significantly reduce the trainable parameters, so as to save the memory footprint of the optimizer states. Experiments show that QST can reduce the total memory footprint by up to 2.3× and speed up the finetuning process by up to 3× while achieving competent performance compared with the state-of-the-art. When it comes to full finetuning, QST can reduce the total memory footprint up to 7×.
2023
Morphological and Semantic Evaluation of Ancient Chinese Machine Translation
Kai Jin
|
Dan Zhao
|
Wuying Liu
Proceedings of the Ancient Language Processing Workshop
Machine translation (MT) of ancient Chinese texts presents unique challenges due to the complex grammatical structures, cultural nuances, and polysemy of the language. This paper focuses on evaluating the translation quality of different platforms for ancient Chinese texts using The Analects as a case study. The evaluation is conducted using the BLEU, LMS, and ESS metrics, and the platforms compared include three machine translation platforms (Baidu Translate, Bing Microsoft Translator, and DeepL), and one language generation model ChatGPT that can engage in translation endeavors. Results show that Baidu performs the best, surpassing the other platforms in all three metrics, while ChatGPT ranks second and demonstrates unique advantages. The translations generated by ChatGPT are deemed highly valuable as references. The study contributes to understanding the challenges of MT for ancient Chinese texts and provides insights for users and researchers in this field. It also highlights the importance of considering specific domain requirements when evaluating MT systems.