Daniel Fried


2021

pdf bib
Reference-Centric Models for Grounded Collaborative Dialogue
Daniel Fried | Justin Chiu | Dan Klein
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

We present a grounded neural dialogue model that successfully collaborates with people in a partially-observable reference game. We focus on a setting where two agents each observe an overlapping part of a world context and need to identify and agree on some object they share. Therefore, the agents should pool their information and communicate pragmatically to solve the task. Our dialogue agent accurately grounds referents from the partner’s utterances using a structured reference resolver, conditions on these referents using a recurrent memory, and uses a pragmatic generation procedure to ensure the partner can resolve the references the agent produces. We evaluate on the OneCommon spatial grounding dialogue task (Udagawa and Aizawa 2019), involving a number of dots arranged on a board with continuously varying positions, sizes, and shades. Our agent substantially outperforms the previous state of the art for the task, obtaining a 20% relative improvement in successful task completion in self-play evaluations and a 50% relative improvement in success in human evaluations.

pdf bib
Modular Networks for Compositional Instruction Following
Rodolfo Corona | Daniel Fried | Coline Devin | Dan Klein | Trevor Darrell
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Standard architectures used in instruction following often struggle on novel compositions of subgoals (e.g. navigating to landmarks or picking up objects) observed during training. We propose a modular architecture for following natural language instructions that describe sequences of diverse subgoals. In our approach, subgoal modules each carry out natural language instructions for a specific subgoal type. A sequence of modules to execute is chosen by learning to segment the instructions and predicting a subgoal type for each segment. When compared to standard, non-modular sequence-to-sequence approaches on ALFRED, a challenging instruction following benchmark, we find that modularization improves generalization to novel subgoal compositions, as well as to environments unseen in training.

pdf bib
Interactive Assignments for Teaching Structured Neural NLP
David Gaddy | Daniel Fried | Nikita Kitaev | Mitchell Stern | Rodolfo Corona | John DeNero | Dan Klein
Proceedings of the Fifth Workshop on Teaching NLP

We present a set of assignments for a graduate-level NLP course. Assignments are designed to be interactive, easily gradable, and to give students hands-on experience with several key types of structure (sequences, tags, parse trees, and logical forms), modern neural architectures (LSTMs and Transformers), inference algorithms (dynamic programs and approximate search) and training methods (full and weak supervision). We designed assignments to build incrementally both within each assignment and across assignments, with the goal of enabling students to undertake graduate-level research in NLP by the end of the course.

pdf bib
Proceedings of the Second Workshop on Advances in Language and Vision Research
Xin | Ronghang Hu | Drew Hudson | Tsu-Jui Fu | Marcus Rohrbach | Daniel Fried
Proceedings of the Second Workshop on Advances in Language and Vision Research

2020

pdf bib
Syntactic Structure Distillation Pretraining for Bidirectional Encoders
Adhiguna Kuncoro | Lingpeng Kong | Daniel Fried | Dani Yogatama | Laura Rimell | Chris Dyer | Phil Blunsom
Transactions of the Association for Computational Linguistics, Volume 8

Textual representation learners trained on large amounts of data have achieved notable success on downstream tasks; intriguingly, they have also performed well on challenging tests of syntactic competence. Hence, it remains an open question whether scalable learners like BERT can become fully proficient in the syntax of natural language by virtue of data scale alone, or whether they still benefit from more explicit syntactic biases. To answer this question, we introduce a knowledge distillation strategy for injecting syntactic biases into BERT pretraining, by distilling the syntactically informative predictions of a hierarchical—albeit harder to scale—syntactic language model. Since BERT models masked words in bidirectional context, we propose to distill the approximate marginal distribution over words in context from the syntactic LM. Our approach reduces relative error by 2–21% on a diverse set of structured prediction tasks, although we obtain mixed results on the GLUE benchmark. Our findings demonstrate the benefits of syntactic biases, even for representation learners that exploit large amounts of data, and contribute to a better understanding of where syntactic biases are helpful in benchmarks of natural language understanding.

pdf bib
Learning to Segment Actions from Observation and Narration
Daniel Fried | Jean-Baptiste Alayrac | Phil Blunsom | Chris Dyer | Stephen Clark | Aida Nematzadeh
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

We apply a generative segmental model of task structure, guided by narration, to action segmentation in video. We focus on unsupervised and weakly-supervised settings where no action labels are known during training. Despite its simplicity, our model performs competitively with previous work on a dataset of naturalistic instructional videos. Our model allows us to vary the sources of supervision used in training, and we find that both task structure and narrative language provide large benefits in segmentation quality.

2019

pdf bib
Cross-Domain Generalization of Neural Constituency Parsers
Daniel Fried | Nikita Kitaev | Dan Klein
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Neural parsers obtain state-of-the-art results on benchmark treebanks for constituency parsing—but to what degree do they generalize to other domains? We present three results about the generalization of neural parsers in a zero-shot setting: training on trees from one corpus and evaluating on out-of-domain corpora. First, neural and non-neural parsers generalize comparably to new domains. Second, incorporating pre-trained encoder representations into neural parsers substantially improves their performance across all domains, but does not give a larger relative improvement for out-of-domain treebanks. Finally, despite the rich input representations they learn, neural parsers still benefit from structured output prediction of output trees, yielding higher exact match accuracy and stronger generalization both to larger text spans and to out-of-domain corpora. We analyze generalization on English and Chinese corpora, and in the process obtain state-of-the-art parsing results for the Brown, Genia, and English Web treebanks.

pdf bib
Are You Looking? Grounding to Multiple Modalities in Vision-and-Language Navigation
Ronghang Hu | Daniel Fried | Anna Rohrbach | Dan Klein | Trevor Darrell | Kate Saenko
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Vision-and-Language Navigation (VLN) requires grounding instructions, such as “turn right and stop at the door”, to routes in a visual environment. The actual grounding can connect language to the environment through multiple modalities, e.g. “stop at the door” might ground into visual objects, while “turn right” might rely only on the geometric structure of a route. We investigate where the natural language empirically grounds under two recent state-of-the-art VLN models. Surprisingly, we discover that visual features may actually hurt these models: models which only use route structure, ablating visual features, outperform their visual counterparts in unseen new environments on the benchmark Room-to-Room dataset. To better use all the available modalities, we propose to decompose the grounding procedure into a set of expert models with access to different modalities (including object detections) and ensemble them at prediction time, improving the performance of state-of-the-art models on the VLN task.

pdf bib
Pragmatically Informative Text Generation
Sheng Shen | Daniel Fried | Jacob Andreas | Dan Klein
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

We improve the informativeness of models for conditional text generation using techniques from computational pragmatics. These techniques formulate language production as a game between speakers and listeners, in which a speaker should generate output text that a listener can use to correctly identify the original input that the text describes. While such approaches are widely used in cognitive science and grounded language learning, they have received less attention for more standard language generation tasks. We consider two pragmatic modeling methods for text generation: one where pragmatics is imposed by information preservation, and another where pragmatics is imposed by explicit modeling of distractors. We find that these methods improve the performance of strong existing systems for abstractive summarization and generation from structured meaning representations.

2018

pdf bib
Unified Pragmatic Models for Generating and Following Instructions
Daniel Fried | Jacob Andreas | Dan Klein
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

We show that explicit pragmatic inference aids in correctly generating and following natural language instructions for complex, sequential tasks. Our pragmatics-enabled models reason about why speakers produce certain instructions, and about how listeners will react upon hearing them. Like previous pragmatic models, we use learned base listener and speaker models to build a pragmatic speaker that uses the base listener to simulate the interpretation of candidate descriptions, and a pragmatic listener that reasons counterfactually about alternative descriptions. We extend these models to tasks with sequential structure. Evaluation of language generation and interpretation shows that pragmatic inference improves state-of-the-art listener models (at correctly interpreting human instructions) and speaker models (at producing instructions correctly interpreted by humans) in diverse settings.

pdf bib
Policy Gradient as a Proxy for Dynamic Oracles in Constituency Parsing
Daniel Fried | Dan Klein
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Dynamic oracles provide strong supervision for training constituency parsers with exploration, but must be custom defined for a given parser’s transition system. We explore using a policy gradient method as a parser-agnostic alternative. In addition to directly optimizing for a tree-level metric such as F1, policy gradient has the potential to reduce exposure bias by allowing exploration during training; moreover, it does not require a dynamic oracle for supervision. On four constituency parsers in three languages, the method substantially outperforms static oracle likelihood training in almost all settings. For parsers where a dynamic oracle is available (including a novel oracle which we define for the transition system of Dyer et al., 2016), policy gradient typically recaptures a substantial fraction of the performance gain afforded by the dynamic oracle.

2017

pdf bib
Effective Inference for Generative Neural Parsing
Mitchell Stern | Daniel Fried | Dan Klein
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Generative neural models have recently achieved state-of-the-art results for constituency parsing. However, without a feasible search procedure, their use has so far been limited to reranking the output of external parsers in which decoding is more tractable. We describe an alternative to the conventional action-level beam search used for discriminative neural models that enables us to decode directly in these generative models. We then show that by improving our basic candidate selection strategy and using a coarse pruning function, we can improve accuracy while exploring significantly less of the search space. Applied to the model of Choe and Charniak (2016), our inference procedure obtains 92.56 F1 on section 23 of the Penn Treebank, surpassing prior state-of-the-art results for single-model systems.

pdf bib
Improving Neural Parsing by Disentangling Model Combination and Reranking Effects
Daniel Fried | Mitchell Stern | Dan Klein
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Recent work has proposed several generative neural models for constituency parsing that achieve state-of-the-art results. Since direct search in these generative models is difficult, they have primarily been used to rescore candidate outputs from base parsers in which decoding is more straightforward. We first present an algorithm for direct search in these generative models. We then demonstrate that the rescoring results are at least partly due to implicit model combination rather than reranking effects. Finally, we show that explicit model combination can improve performance even further, resulting in new state-of-the-art numbers on the PTB of 94.25 F1 when training only on gold data and 94.66 F1 when using external data.

2016

pdf bib
Towards Using Social Media to Identify Individuals at Risk for Preventable Chronic Illness
Dane Bell | Daniel Fried | Luwen Huangfu | Mihai Surdeanu | Stephen Kobourov
Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)

We describe a strategy for the acquisition of training data necessary to build a social-media-driven early detection system for individuals at risk for (preventable) type 2 diabetes mellitus (T2DM). The strategy uses a game-like quiz with data and questions acquired semi-automatically from Twitter. The questions are designed to inspire participant engagement and collect relevant data to train a public-health model applied to individuals. Prior systems designed to use social media such as Twitter to predict obesity (a risk factor for T2DM) operate on entire communities such as states, counties, or cities, based on statistics gathered by government agencies. Because there is considerable variation among individuals within these groups, training data on the individual level would be more effective, but this data is difficult to acquire. The approach proposed here aims to address this issue. Our strategy has two steps. First, we trained a random forest classifier on data gathered from (public) Twitter statuses and state-level statistics with state-of-the-art accuracy. We then converted this classifier into a 20-questions-style quiz and made it available online. In doing so, we achieved high engagement with individuals that took the quiz, while also building a training set of voluntarily supplied individual-level data for future classification.

2015

pdf bib
Higher-order Lexical Semantic Models for Non-factoid Answer Reranking
Daniel Fried | Peter Jansen | Gustave Hahn-Powell | Mihai Surdeanu | Peter Clark
Transactions of the Association for Computational Linguistics, Volume 3

Lexical semantic models provide robust performance for question answering, but, in general, can only capitalize on direct evidence seen during training. For example, monolingual alignment models acquire term alignment probabilities from semi-structured data such as question-answer pairs; neural network language models learn term embeddings from unstructured text. All this knowledge is then used to estimate the semantic similarity between question and answer candidates. We introduce a higher-order formalism that allows all these lexical semantic models to chain direct evidence to construct indirect associations between question and answer texts, by casting the task as the traversal of graphs that encode direct term associations. Using a corpus of 10,000 questions from Yahoo! Answers, we experimentally demonstrate that higher-order methods are broadly applicable to alignment and language models, across both word and syntactic representations. We show that an important criterion for success is controlling for the semantic drift that accumulates during graph traversal. All in all, the proposed higher-order approach improves five out of the six lexical semantic models investigated, with relative gains of up to +13% over their first-order variants.

pdf bib
Low-Rank Tensors for Verbs in Compositional Distributional Semantics
Daniel Fried | Tamara Polajnar | Stephen Clark
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)