Daniel Iglesias


2025

pdf bib
byteSizedLLM@NLU of Devanagari Script Languages 2025: Hate Speech Detection and Target Identification Using Customized Attention BiLSTM and XLM-RoBERTa Base Embeddings
Rohith Gowtham Kodali | Durga Prasad Manukonda | Daniel Iglesias
Proceedings of the First Workshop on Challenges in Processing South Asian Languages (CHiPSAL 2025)

This paper presents a novel approach to hate speech detection and target identification across Devanagari-script languages, with a focus on Hindi and Nepali. Leveraging an Attention BiLSTM-XLM-RoBERTa architecture, our model effectively captures language-specific features and sequential dependencies crucial for multilingual natural language understanding (NLU). In Task B (Hate Speech Detection), our model achieved a Macro F1 score of 0.7481, demonstrating its robustness in identifying hateful content across linguistic variations. For Task C (Target Identification), it reached a Macro F1 score of 0.6715, highlighting its ability to classify targets into “individual,” “organization,” and “community” with high accuracy. Our work addresses the gap in Devanagari-scripted multilingual hate speech analysis and sets a benchmark for future research in low-resource language contexts.