Daniel Licht


pdf bib
Toxicity in Multilingual Machine Translation at Scale
Marta Costa-jussà | Eric Smith | Christophe Ropers | Daniel Licht | Jean Maillard | Javier Ferrando | Carlos Escolano
Findings of the Association for Computational Linguistics: EMNLP 2023

Machine Translation systems can produce different types of errors, some of which are characterized as critical or catastrophic due to the specific negative impact that they can have on users. In this paper we focus on one type of critical error: added toxicity. We evaluate and analyze added toxicity when translating a large evaluation dataset (HOLISTICBIAS, over 472k sentences, covering 13 demographic axes) from English into 164 languages. An automatic toxicity evaluation shows that added toxicity across languages varies from 0% to 5%. The output languages with the most added toxicity tend to be low-resource ones, and the demographic axes with the most added toxicity include sexual orientation, gender and sex, and ability. We also perform human evaluation on a subset of 8 translation directions, confirming the prevalence of true added toxicity. We use a measurement of the amount of source contribution to the translation, where a low source contribution implies hallucination, to interpret what causes toxicity. Making use of the input attributions allows us to explain toxicity, because the source contributions significantly correlate with toxicity for 84% of languages studied. Given our findings, our recommendations to reduce added toxicity are to curate training data to avoid mistranslations, mitigate hallucination and check unstable translations.

pdf bib
Multilingual Holistic Bias: Extending Descriptors and Patterns to Unveil Demographic Biases in Languages at Scale
Marta Costa-jussà | Pierre Andrews | Eric Smith | Prangthip Hansanti | Christophe Ropers | Elahe Kalbassi | Cynthia Gao | Daniel Licht | Carleigh Wood
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

We introduce a multilingual extension of the HolisticBias dataset, the largest English template-based taxonomy of textual people references: Multilingual HolisticBias. This extension consists of 20,459 sentences in 50 languages distributed across 13 demographic axes. Source sentences are built from combinations of 118 demographic descriptors and three patterns, excluding nonsensical combinations. Multilingual translations include alternatives for gendered languages that cover gendered translations when there is ambiguity in English. Our dataset is intended to uncover demographic imbalances and be the tool to quantify mitigations towards them. Our initial findings show that translation quality for EN-to-XX translations is an average of almost 8 spBLEU better when evaluating with the masculine human reference compared to feminine. In the opposite direction, XX-to-EN, we compare the robustness of the model when the source input only differs in gender (masculine or feminine) and masculine translations are an average of almost 4 spBLEU better than feminine. When embedding sentences to a joint multilingual sentence representations space, we find that for most languages masculine translations are significantly closer to the English neutral sentences when embedded.


pdf bib
Consistent Human Evaluation of Machine Translation across Language Pairs
Daniel Licht | Cynthia Gao | Janice Lam | Francisco Guzman | Mona Diab | Philipp Koehn
Proceedings of the 15th biennial conference of the Association for Machine Translation in the Americas (Volume 1: Research Track)

Obtaining meaningful quality scores for machine translation systems through human evaluation remains a challenge given the high variability between human evaluators, partly due to subjective expectations for translation quality for different language pairs. We propose a new metric called XSTS that is more focused on semantic equivalence and a cross-lingual calibration method that enables more consistent assessment. We demonstrate the effectiveness of these novel contributions in large scale evaluation studies across up to 14 language pairs, with translation both into and out of English.