Daniel Reich
2024
Uncovering the Full Potential of Visual Grounding Methods in VQA
Daniel Reich
|
Tanja Schultz
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Visual Grounding (VG) methods in Visual Question Answering (VQA) attempt to improve VQA performance by strengthening a model’s reliance on question-relevant visual information. The presence of such relevant information in the visual input is typically assumed in training and testing. This assumption, however, is inherently flawed when dealing with imperfect image representations common in large-scale VQA, where the information carried by visual features frequently deviates from expected ground-truth contents. As a result, training and testing of VG-methods is performed with largely inaccurate data, which obstructs proper assessment of their potential benefits.In this study, we demonstrate that current evaluation schemes for VG-methods are problematic due to the flawed assumption of availability of relevant visual information. Our experiments show that these methods can be much more effective when evaluation conditions are corrected. Code is provided.
2023
Measuring Faithful and Plausible Visual Grounding in VQA
Daniel Reich
|
Felix Putze
|
Tanja Schultz
Findings of the Association for Computational Linguistics: EMNLP 2023
Metrics for Visual Grounding (VG) in Visual Question Answering (VQA) systems primarily aim to measure a system’s reliance on relevant parts of the image when inferring an answer to the given question. Lack of VG has been a common problem among state-of-the-art VQA systems and can manifest in over-reliance on irrelevant image parts or a disregard for the visual modality entirely. Although inference capabilities of VQA models are often illustrated by a few qualitative illustrations, most systems are not quantitatively assessed for their VG properties. We believe, an easily calculated criterion for meaningfully measuring a system’s VG can help remedy this shortcoming, as well as add another valuable dimension to model evaluations and analysis. To this end, we propose a new VG metric that captures if a model a) identifies question-relevant objects in the scene, and b) actually relies on the information contained in the relevant objects when producing its answer, i.e., if its visual grounding is both “faithful” and “plausible”. Our metric, called Faithful & Plausible Visual Grounding (FPVG), is straightforward to determine for most VQA model designs. We give a detailed description of FPVG and evaluate several reference systems spanning various VQA architectures. Code to support the metric calculations on the GQA data set is available on GitHub.