Daria Matyash
2022
Razmecheno: Named Entity Recognition from Digital Archive of Diaries “Prozhito”
Timofey Atnashev
|
Veronika Ganeeva
|
Roman Kazakov
|
Daria Matyash
|
Michael Sonkin
|
Ekaterina Voloshina
|
Oleg Serikov
|
Ekaterina Artemova
Proceedings of the Fifth International Conference on Computational Linguistics in Bulgaria (CLIB 2022)
The vast majority of existing datasets for Named Entity Recognition (NER) are built primarily on news, research papers and Wikipedia with a few exceptions, created from historical and literary texts. What is more, English is the main source for data for further labelling. This paper aims to fill in multiple gaps by creating a novel dataset “Razmecheno”, gathered from the diary texts of the project “Prozhito” in Russian. Our dataset is of interest for multiple research lines: literary studies of diary texts, transfer learning from other domains, low-resource or cross-lingual named entity recognition. Razmecheno comprises 1331 sentences and 14119 tokens, sampled from diaries, written during the Perestroika. The annotation schema consists of five commonly used entity tags: person, characteristics, location, organisation, and facility. The labelling is carried out on the crowdsourcing platfrom Yandex.Toloka in two stages. First, workers selected sentences, which contain an entity of particular type. Second, they marked up entity spans. As a result 1113 entities were obtained. Empirical evaluation of Razmecheno is carried out with off-the-shelf NER tools and by fine-tuning pre-trained contextualized encoders. We release the annotated dataset for open access.
Search
Fix data
Co-authors
- Ekaterina Artemova 1
- Timofey Atnashev 1
- Veronika Ganeeva 1
- Roman Kazakov 1
- Oleg Serikov 1
- show all...
Venues
- clib1