Understanding textual description to generate code seems to be an achieved capability of instruction-following Large Language Models (LLMs) in zero-shot scenario. However, there is a severe possibility that this translation ability may be influenced by having seen target textual descriptions and the related code. This effect is known as Data Contamination.In this study, we investigate the impact of Data Contamination on the performance of GPT-3.5 in the Text-to-SQL code-generating tasks. Hence, we introduce a novel method to detect Data Contamination in GPTs and examine GPT-3.5’s Text-to-SQL performances using the known Spider Dataset and our new unfamiliar dataset Termite. Furthermore, we analyze GPT-3.5’s efficacy on databases with modified information via an adversarial table disconnection (ATD) approach, complicating Text-to-SQL tasks by removing structural pieces of information from the database. Our results indicate a significant performance drop in GPT-3.5 on the unfamiliar Termite dataset, even with ATD modifications, highlighting the effect of Data Contamination on LLMs in Text-to-SQL translation tasks.
Cheap-to-Build Very Large-Language Models (CtB-LLMs) with affordable training are emerging as the next big revolution in natural language processing and understanding. These CtB-LLMs are democratizing access to trainable Very Large-Language Models (VLLMs) and, thus, may represent the building blocks of many NLP systems solving downstream tasks. Hence, a little or a large bias in CtB-LLMs may cause huge harm. In this paper, we performed a large investigation of the bias of three families of CtB-LLMs, and we showed that debiasing techniques are effective and usable. Indeed, according to current tests, the LLaMA and the OPT families have an important bias in gender, race, religion, and profession. In contrast to the analysis for other LMMs, we discovered that bias depends not on the number of parameters but on the perplexity. Finally, the debiasing of OPT using LORA reduces bias up to 4.12 points in the normalized stereotype score.
Instruction-Following Language Models (IFLMs) are promising and versatile tools for solving many downstream, information-seeking tasks. Given their success, there is an urgent need to have a shared resource to determine whether existing and new IFLMs are prone to produce biased language interactions. In this paper, we propose Prompt Association Test (P-AT): a new resource for testing the presence of social biases in IFLMs. P-AT stems from WEAT (Caliskan et al., 2017) and generalizes the notion of measuring social biases to IFLMs. Basically, we cast WEAT word tests in promptized classification tasks, and we associate a metric - the bias score. Our resource consists of 2310 prompts. We then experimented with several families of IFLMs discovering gender and race biases in all the analyzed models. We expect P-AT to be an important tool for quantifying bias across different dimensions and, therefore, for encouraging the creation of fairer IFLMs before their distortions have consequences in the real world.
Pre-trained Transformers are challenging human performances in many Natural Language Processing tasks. The massive datasets used for pre-training seem to be the key to their success on existing tasks. In this paper, we explore how a range of pre-trained natural language understanding models performs on definitely unseen sentences provided by classification tasks over a DarkNet corpus. Surprisingly, results show that syntactic and lexical neural networks perform on par with pre-trained Transformers even after fine-tuning. Only after what we call extreme domain adaptation, that is, retraining with the masked language model task on all the novel corpus, pre-trained Transformers reach their standard high results. This suggests that huge pre-training corpora may give Transformers unexpected help since they are exposed to many of the possible sentences.
Syntactic parsers have dominated natural language understanding for decades. Yet, their syntactic interpretations are losing centrality in downstream tasks due to the success of large-scale textual representation learners. In this paper, we propose KERMIT (Kernel-inspired Encoder with Recursive Mechanism for Interpretable Trees) to embed symbolic syntactic parse trees into artificial neural networks and to visualize how syntax is used in inference. We experimented with KERMIT paired with two state-of-the-art transformer-based universal sentence encoders (BERT and XLNet) and we showed that KERMIT can indeed boost their performance by effectively embedding human-coded universal syntactic representations in neural networks