David Belanger


2017

pdf bib
Fast and Accurate Entity Recognition with Iterated Dilated Convolutions
Emma Strubell | Patrick Verga | David Belanger | Andrew McCallum
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Today when many practitioners run basic NLP on the entire web and large-volume traffic, faster methods are paramount to saving time and energy costs. Recent advances in GPU hardware have led to the emergence of bi-directional LSTMs as a standard method for obtaining per-token vector representations serving as input to labeling tasks such as NER (often followed by prediction in a linear-chain CRF). Though expressive and accurate, these models fail to fully exploit GPU parallelism, limiting their computational efficiency. This paper proposes a faster alternative to Bi-LSTMs for NER: Iterated Dilated Convolutional Neural Networks (ID-CNNs), which have better capacity than traditional CNNs for large context and structured prediction. Unlike LSTMs whose sequential processing on sentences of length N requires O(N) time even in the face of parallelism, ID-CNNs permit fixed-depth convolutions to run in parallel across entire documents. We describe a distinct combination of network structure, parameter sharing and training procedures that enable dramatic 14-20x test-time speedups while retaining accuracy comparable to the Bi-LSTM-CRF. Moreover, ID-CNNs trained to aggregate context from the entire document are more accurate than Bi-LSTM-CRFs while attaining 8x faster test time speeds.

pdf bib
Chains of Reasoning over Entities, Relations, and Text using Recurrent Neural Networks
Rajarshi Das | Arvind Neelakantan | David Belanger | Andrew McCallum
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers

Our goal is to combine the rich multi-step inference of symbolic logical reasoning with the generalization capabilities of neural networks. We are particularly interested in complex reasoning about entities and relations in text and large-scale knowledge bases (KBs). Neelakantan et al. (2015) use RNNs to compose the distributed semantics of multi-hop paths in KBs; however for multiple reasons, the approach lacks accuracy and practicality. This paper proposes three significant modeling advances: (1) we learn to jointly reason about relations, entities, and entity-types; (2) we use neural attention modeling to incorporate multiple paths; (3) we learn to share strength in a single RNN that represents logical composition across all relations. On a large-scale Freebase+ClueWeb prediction task, we achieve 25% error reduction, and a 53% error reduction on sparse relations due to shared strength. On chains of reasoning in WordNet we reduce error in mean quantile by 84% versus previous state-of-the-art.

2016

pdf bib
Multilingual Relation Extraction using Compositional Universal Schema
Patrick Verga | David Belanger | Emma Strubell | Benjamin Roth | Andrew McCallum
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

pdf bib
Incorporating Selectional Preferences in Multi-hop Relation Extraction
Rajarshi Das | Arvind Neelakantan | David Belanger | Andrew McCallum
Proceedings of the 5th Workshop on Automated Knowledge Base Construction

2014

pdf bib
Learning Soft Linear Constraints with Application to Citation Field Extraction
Sam Anzaroot | Alexandre Passos | David Belanger | Andrew McCallum
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)