Machine translation models sometimes lead to added toxicity: translated outputs may contain more toxic content that the original input. In this paper, we introduce MinTox, a novel pipeline to automatically identify and mitigate added toxicity at inference time, without further model training. MinTox leverages a multimodal (speech and text) toxicity classifier that can scale across languages.We demonstrate the capabilities of MinTox when applied to SEAMLESSM4T, a multi-modal and massively multilingual machine translation system. MinTox significantly reduces added toxicity: across all domains, modalities and language directions, 25% to95% of added toxicity is successfully filtered out, while preserving translation quality
Research in toxicity detection in natural language processing for the speech modality (audio-based) is quite limited, particularly for languages other than English. To address these limitations and lay the groundwork for truly multilingual audio-based toxicity detection, we introduce MuTox, the first highly multilingual audio-based dataset with toxicity labels which covers 14 different linguistic families. The dataset comprises 20,000 audio utterances for English and Spanish, and 4,000 for the other 28 languages. To demonstrate the quality of this dataset, we trained the MuTox audio-based toxicity classifier, which enables zero-shot toxicity detection across a wide range of languages. This classifier performs on par with existing text-based trainable classifiers, while expanding the language coverage more than tenfold. When compared to a wordlist-based classifier that covers a similar number of languages, MuTox improves F1-Score by an average of 100%. This significant improvement underscores the potential of MuTox in advancing the field of audio-based toxicity detection.
We present BLASER 2.0, an automatic metric of machine translation quality which supports both speech and text modalities. Compared to its predecessor BLASER (Chen et al., 2023), BLASER 2.0 is based on better underlying text and speech representations that cover 202 text languages and 57 speech ones and extends the training data. BLASER 2.0 comes in two varieties: a reference-based and a reference-free (quality estimation) model. We demonstrate that the reference-free version is applicable not only at the dataset level, for evaluating the overall model performance, but also at the sentence level, for scoring individual translations. In particular, we show its applicability for detecting translation hallucinations and filtering training datasets to obtain more reliable translation models. The BLASER 2.0 models are publicly available at https://github.com/facebookresearch/sonar.
Speech-to-Speech and Speech-to-Text translation are currently dynamic areas of research. In our commitment to advance these fields, we present SpeechAlign, a framework designed to evaluate the underexplored field of source-target alignment in speech models. The SpeechAlign framework has two core components. First, to tackle the absence of suitable evaluation datasets, we introduce the Speech Gold Alignment dataset, built upon a English-German text translation gold alignment dataset. Secondly, we introduce two novel metrics, Speech Alignment Error Rate (SAER) and Time-weighted Speech Alignment Error Rate (TW-SAER), which enable the evaluation of alignment quality within speech models. While the former gives equal importance to each word, the latter assigns weights based on the length of the words in the speech signal. By publishing SpeechAlign we provide an accessible evaluation framework for model assessment, and we employ it to benchmark open-source Speech Translation models. In doing so, we contribute to the ongoing research progress within the fields of Speech-to-Speech and Speech-to-Text translation.
This paper introduces a translation of the FLORES+ dataset into the endangered Erzya language, with the goal of evaluating machine translation between this language and any of the other 200 languages already included into FLORES+. This translation was carried out as a part of the Open Language Data shared task at WMT24. We also present a benchmark of existing translation models bases on this dataset and a new translation model that achieves the state-of-the-art quality of translation into Erzya from Russian and English.
While the problem of hallucinations in neural machine translation has long been recognized, so far the progress on its alleviation is very little. Indeed, recently it turned out that without artificially encouraging models to hallucinate, previously existing methods fall short and even the standard sequence log-probability is more informative. It means that internal characteristics of the model can give much more information than we expect, and before using external models and measures, we first need to ask: how far can we go if we use nothing but the translation model itself ? We propose to use a method that evaluates the percentage of the source contribution to a generated translation. Intuitively, hallucinations are translations “detached” from the source, hence they can be identified by low source contribution. This method improves detection accuracy for the most severe hallucinations by a factor of 2 and is able to alleviate hallucinations at test time on par with the previous best approach that relies on external models. Next, if we move away from internal model characteristics and allow external tools, we show that using sentence similarity from cross-lingual embeddings further improves these results. We release the code of our experiments.
Hallucinations in machine translation are translations that contain information completely unrelated to the input. Omissions are translations that do not include some of the input information. While both cases tend to be catastrophic errors undermining user trust, annotated data with these types of pathologies is extremely scarce and is limited to a few high-resource languages. In this work, we release an annotated dataset for the hallucination and omission phenomena covering 18 translation directions with varying resource levels and scripts. Our annotation covers different levels of partial and full hallucinations as well as omissions both at the sentence and at the word level. Additionally, we revisit previous methods for hallucination and omission detection, show that conclusions made based on a single language pair largely do not hold for a large-scale evaluation, and establish new solid baselines.
We present a novel pipeline for the collection of parallel data for the detoxification task. We collect non-toxic paraphrases for over 10,000 English toxic sentences. We also show that this pipeline can be used to distill a large existing corpus of paraphrases to get toxic-neutral sentence pairs. We release two parallel corpora which can be used for the training of detoxification models. To the best of our knowledge, these are the first parallel datasets for this task. We describe our pipeline in detail to make it fast to set up for a new language or domain, thus contributing to faster and easier development of new parallel resources. We train several detoxification models on the collected data and compare them with several baselines and state-of-the-art unsupervised approaches. We conduct both automatic and manual evaluations. All models trained on parallel data outperform the state-of-the-art unsupervised models by a large margin. This suggests that our novel datasets can boost the performance of detoxification systems.
Text style transfer and paraphrasing of texts are actively growing areas of NLP, dozens of methods for solving these tasks have been recently introduced. In both tasks, the system is supposed to generate a text which should be semantically similar to the input text. Therefore, these tasks are dependent on methods of measuring textual semantic similarity. However, it is still unclear which measures are the best to automatically evaluate content preservation between original and generated text. According to our observations, many researchers still use BLEU-like measures, while there exist more advanced measures including neural-based that significantly outperform classic approaches. The current problem is the lack of a thorough evaluation of the available measures. We close this gap by conducting a large-scale computational study by comparing 57 measures based on different principles on 19 annotated datasets. We show that measures based on cross-encoder models outperform alternative approaches in almost all cases. We also introduce the Mutual Implication Score (MIS), a measure that uses the idea of paraphrasing as a bidirectional entailment and outperforms all other measures on the paraphrase detection task and performs on par with the best measures in the text style transfer task.
We present the first neural machine translation system for translation between the endangered Erzya language and Russian and the dataset collected by us to train and evaluate it. The BLEU scores are 17 and 19 for translation to Erzya and Russian respectively, and more than half of the translations are rated as acceptable by native speakers. We also adapt our model to translate between Erzya and 10 other languages, but without additional parallel data, the quality on these directions remains low. We release the translation models along with the collected text corpus, a new language identification model, and a multilingual sentence encoder adapted for the Erzya language. These resources will be available at https://github.com/slone-nlp/myv-nmt.
We present two novel unsupervised methods for eliminating toxicity in text. Our first method combines two recent ideas: (1) guidance of the generation process with small style-conditional language models and (2) use of paraphrasing models to perform style transfer. We use a well-performing paraphraser guided by style-trained language models to keep the text content and remove toxicity. Our second method uses BERT to replace toxic words with their non-offensive synonyms. We make the method more flexible by enabling BERT to replace mask tokens with a variable number of words. Finally, we present the first large-scale comparative study of style transfer models on the task of toxicity removal. We compare our models with a number of methods for style transfer. The models are evaluated in a reference-free way using a combination of unsupervised style transfer metrics. Both methods we suggest yield new SOTA results.
This work describes the participation of the Skoltech NLP group team (Sk) in the Toxic Spans Detection task at SemEval-2021. The goal of the task is to identify the most toxic fragments of a given sentence, which is a binary sequence tagging problem. We show that fine-tuning a RoBERTa model for this problem is a strong baseline. This baseline can be further improved by pre-training the RoBERTa model on a large dataset labeled for toxicity at the sentence level. While our solution scored among the top 20% participating models, it is only 2 points below the best result. This suggests the viability of our approach.