In this paper, we present an improved model for voicing silent speech, where audio is synthesized from facial electromyography (EMG) signals. To give our model greater flexibility to learn its own input features, we directly use EMG signals as input in the place of hand-designed features used by prior work. Our model uses convolutional layers to extract features from the signals and Transformer layers to propagate information across longer distances. To provide better signal for learning, we also introduce an auxiliary task of predicting phoneme labels in addition to predicting speech audio features. On an open vocabulary intelligibility evaluation, our model improves the state of the art for this task by an absolute 25.8%.
We present a set of assignments for a graduate-level NLP course. Assignments are designed to be interactive, easily gradable, and to give students hands-on experience with several key types of structure (sequences, tags, parse trees, and logical forms), modern neural architectures (LSTMs and Transformers), inference algorithms (dynamic programs and approximate search) and training methods (full and weak supervision). We designed assignments to build incrementally both within each assignment and across assignments, with the goal of enabling students to undertake graduate-level research in NLP by the end of the course.
In this paper, we explore how to use a small amount of new data to update a task-oriented semantic parsing model when the desired output for some examples has changed. When making updates in this way, one potential problem that arises is the presence of conflicting data, or out-of-date labels in the original training set. To evaluate the impact of this understudied problem, we propose an experimental setup for simulating changes to a neural semantic parser. We show that the presence of conflicting data greatly hinders learning of an update, then explore several methods to mitigate its effect. Our multi-task and data selection methods lead to large improvements in model accuracy compared to a naive data-mixing strategy, and our best method closes 86% of the accuracy gap between this baseline and an oracle upper bound.
In this paper, we consider the task of digitally voicing silent speech, where silently mouthed words are converted to audible speech based on electromyography (EMG) sensor measurements that capture muscle impulses. While prior work has focused on training speech synthesis models from EMG collected during vocalized speech, we are the first to train from EMG collected during silently articulated speech. We introduce a method of training on silent EMG by transferring audio targets from vocalized to silent signals. Our method greatly improves intelligibility of audio generated from silent EMG compared to a baseline that only trains with vocalized data, decreasing transcription word error rate from 64% to 4% in one data condition and 88% to 68% in another. To spur further development on this task, we share our new dataset of silent and vocalized facial EMG measurements.
We consider the problem of learning to map from natural language instructions to state transitions (actions) in a data-efficient manner. Our method takes inspiration from the idea that it should be easier to ground language to concepts that have already been formed through pre-linguistic observation. We augment a baseline instruction-following learner with an initial environment-learning phase that uses observations of language-free state transitions to induce a suitable latent representation of actions before processing the instruction-following training data. We show that mapping to pre-learned representations substantially improves performance over systems whose representations are learned from limited instructional data alone.
A number of differences have emerged between modern and classic approaches to constituency parsing in recent years, with structural components like grammars and feature-rich lexicons becoming less central while recurrent neural network representations rise in popularity. The goal of this work is to analyze the extent to which information provided directly by the model structure in classical systems is still being captured by neural methods. To this end, we propose a high-performance neural model (92.08 F1 on PTB) that is representative of recent work and perform a series of investigative experiments. We find that our model implicitly learns to encode much of the same information that was explicitly provided by grammars and lexicons in the past, indicating that this scaffolding can largely be subsumed by powerful general-purpose neural machinery.