David Harwath


pdf bib
Speak: A Toolkit Using Amazon Mechanical Turk to Collect and Validate Speech Audio Recordings
Christopher Song | David Harwath | Tuka Alhanai | James Glass
Proceedings of the Thirteenth Language Resources and Evaluation Conference

We present Speak, a toolkit that allows researchers to crowdsource speech audio recordings using Amazon Mechanical Turk (MTurk). Speak allows MTurk workers to submit speech recordings in response to a task prompt and stimulus (e.g. image, text excerpt, audio file) defined by researchers, a functionality that is not natively offered by MTurk at the time of writing this paper. Importantly, the toolkit employs numerous measures to ensure that speech recordings collected are of adequate quality, in order to avoid accepting unusable data and prevent abuse/fraud. Speak has demonstrated utility, having collected over 600,000 recordings to date. The toolkit is open-source and available for download.

pdf bib
Why is Winoground Hard? Investigating Failures in Visuolinguistic Compositionality
Anuj Diwan | Layne Berry | Eunsol Choi | David Harwath | Kyle Mahowald
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Recent visuolinguistic pre-trained models show promising progress on various end tasks such as image retrieval and video captioning. Yet, they fail miserably on the recently proposed Winoground dataset, which challenges models to match paired images and English captions, with items constructed to overlap lexically but differ in meaning (e.g., “there is a mug in some grass” vs. “there is some grass in a mug”). By annotating the dataset using new fine-grained tags, we show that solving the Winoground task requires not just compositional language understanding, but a host of other abilities like commonsense reasoning or locating small, out-of-focus objects in low-resolution images. In this paper, we identify the dataset’s main challenges through a suite of experiments on related tasks (probing task, image retrieval task), data augmentation, and manual inspection of the dataset. Our analysis suggests that a main challenge in visuolinguistic models may lie in fusing visual and textual representations, rather than in compositional language understanding. We release our annotation and code at https://github.com/ajd12342/why-winoground-hard.


pdf bib
Text-Free Image-to-Speech Synthesis Using Learned Segmental Units
Wei-Ning Hsu | David Harwath | Tyler Miller | Christopher Song | James Glass
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

In this paper we present the first model for directly synthesizing fluent, natural-sounding spoken audio captions for images that does not require natural language text as an intermediate representation or source of supervision. Instead, we connect the image captioning module and the speech synthesis module with a set of discrete, sub-word speech units that are discovered with a self-supervised visual grounding task. We conduct experiments on the Flickr8k spoken caption dataset in addition to a novel corpus of spoken audio captions collected for the popular MSCOCO dataset, demonstrating that our generated captions also capture diverse visual semantics of the images they describe. We investigate several different intermediate speech representations, and empirically find that the representation must satisfy several important properties to serve as drop-in replacements for text.


pdf bib
Learning Word-Like Units from Joint Audio-Visual Analysis
David Harwath | James Glass
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Given a collection of images and spoken audio captions, we present a method for discovering word-like acoustic units in the continuous speech signal and grounding them to semantically relevant image regions. For example, our model is able to detect spoken instances of the word ‘lighthouse’ within an utterance and associate them with image regions containing lighthouses. We do not use any form of conventional automatic speech recognition, nor do we use any text transcriptions or conventional linguistic annotations. Our model effectively implements a form of spoken language acquisition, in which the computer learns not only to recognize word categories by sound, but also to enrich the words it learns with semantics by grounding them in images.