Dawei Zhu


2024

pdf bib
CoUDA: Coherence Evaluation via Unified Data Augmentation
Dawei Zhu | Wenhao Wu | Yifan Song | Fangwei Zhu | Ziqiang Cao | Sujian Li
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Coherence evaluation aims to assess the organization and structure of a discourse, which remains challenging even in the era of large language models. Due to the scarcity of annotated data, data augmentation is commonly used for training coherence evaluation models. However, previous augmentations for this task primarily rely on heuristic rules, lacking designing criteria as guidance.In this paper, we take inspiration from linguistic theory of discourse structure, and propose a data augmentation framework named CoUDA. CoUDA breaks down discourse coherence into global and local aspects, and designs augmentation strategies for both aspects, respectively.Especially for local coherence, we propose a novel generative strategy for constructing augmentation samples, which involves post-pretraining a generative model and applying two controlling mechanisms to control the difficulty of generated samples. During inference, CoUDA also jointly evaluates both global and local aspects to comprehensively assess the overall coherence of a discourse.Extensive experiments in coherence evaluation show that, with only 233M parameters, CoUDA achieves state-of-the-art performance in both pointwise scoring and pairwise ranking tasks, even surpassing recent GPT-3.5 and GPT-4 based metrics.

pdf bib
A Preference-driven Paradigm for Enhanced Translation with Large Language Models
Dawei Zhu | Sony Trenous | Xiaoyu Shen | Dietrich Klakow | Bill Byrne | Eva Hasler
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Recent research has shown that large language models (LLMs) can achieve remarkable translation performance through supervised fine-tuning (SFT) using only a small amount of parallel data. However, SFT simply instructs the model to imitate the reference translations at the token level, making it vulnerable to the noise present in the references. Hence, the assistance from SFT often reaches a plateau once the LLMs have achieved a certain level of translation capability, and further increasing the size of parallel data does not provide additional benefits. To overcome this plateau associated with imitation-based SFT, we propose a preference-based approach built upon the Plackett-Luce model. The objective is to steer LLMs towards a more nuanced understanding of translation preferences from a holistic view, while also being more resilient in the absence of gold translations. We further build a dataset named MAPLE to verify the effectiveness of our approach, which includes multiple translations of varying quality for each source sentence. Extensive experiments demonstrate the superiority of our approach in “breaking the plateau” across diverse LLMs and test settings. Our in-depth analysis underscores the pivotal role of diverse translations and accurate preference scores in the success of our approach.

2023

pdf bib
InfoCL: Alleviating Catastrophic Forgetting in Continual Text Classification from An Information Theoretic Perspective
Yifan Song | Peiyi Wang | Weimin Xiong | Dawei Zhu | Tianyu Liu | Zhifang Sui | Sujian Li
Findings of the Association for Computational Linguistics: EMNLP 2023

Continual learning (CL) aims to constantly learn new knowledge over time while avoiding catastrophic forgetting on old tasks. We focus on continual text classification under the class-incremental setting. Recent CL studies have identified the severe performance decrease on analogous classes as a key factor for catastrophic forgetting. In this paper, through an in-depth exploration of the representation learning process in CL, we discover that the compression effect of the information bottleneck leads to confusion on analogous classes. To enable the model learn more sufficient representations, we propose a novel replay-based continual text classification method, InfoCL. Our approach utilizes fast-slow and current-past contrastive learning to perform mutual information maximization and better recover the previously learned representations. In addition, InfoCL incorporates an adversarial memory augmentation strategy to alleviate the overfitting problem of replay. Experimental results demonstrate that InfoCL effectively mitigates forgetting and achieves state-of-the-art performance on three text classification tasks.

pdf bib
Meta Self-Refinement for Robust Learning with Weak Supervision
Dawei Zhu | Xiaoyu Shen | Michael Hedderich | Dietrich Klakow
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Training deep neural networks (DNNs) under weak supervision has attracted increasing research attention as it can significantly reduce the annotation cost. However, labels from weak supervision can be noisy, and the high capacity of DNNs enables them to easily overfit the label noise, resulting in poor generalization. Recent methods leverage self-training to build noise-resistant models, in which a teacher trained under weak supervision is used to provide highly confident labels for teaching the students. Nevertheless, the teacher derived from such frameworks may have fitted a substantial amount of noise and therefore produce incorrect pseudo-labels with high confidence, leading to severe error propagation. In this work, we propose Meta Self-Refinement (MSR), a noise-resistant learning framework, to effectively combat label noise from weak supervision. Instead of relying on a fixed teacher trained with noisy labels, we encourage the teacher to refine its pseudo-labels. At each training step, MSR performs a meta gradient descent on the current mini-batch to maximize the student performance on a clean validation set. Extensive experimentation on eight NLP benchmarks demonstrates that MSR is robust against label noise in all settings and outperforms state-of-the-art methods by up to 11.4% in accuracy and 9.26% in F1 score.

pdf bib
Weaker Than You Think: A Critical Look at Weakly Supervised Learning
Dawei Zhu | Xiaoyu Shen | Marius Mosbach | Andreas Stephan | Dietrich Klakow
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Weakly supervised learning is a popular approach for training machine learning models in low-resource settings. Instead of requesting high-quality yet costly human annotations, it allows training models with noisy annotations obtained from various weak sources. Recently, many sophisticated approaches have been proposed for robust training under label noise, reporting impressive results. In this paper, we revisit the setup of these approaches and find that the benefits brought by these approaches are significantly overestimated. Specifically, we find that the success of existing weakly supervised learning approaches heavily relies on the availability of clean validation samples which, as we show, can be leveraged much more efficiently by simply training on them. After using these clean labels in training, the advantages of using these sophisticated approaches are mostly wiped out. This remains true even when reducing the size of the available clean data to just five samples per class, making these approaches impractical. To understand the true value of weakly supervised learning, we thoroughly analyze diverse NLP datasets and tasks to ascertain when and why weakly supervised approaches work. Based on our findings, we provide recommendations for future research.

2022

pdf bib
ConFiguRe: Exploring Discourse-level Chinese Figures of Speech
Dawei Zhu | Qiusi Zhan | Zhejian Zhou | Yifan Song | Jiebin Zhang | Sujian Li
Proceedings of the 29th International Conference on Computational Linguistics

Figures of speech, such as metaphor and irony, are ubiquitous in literature works and colloquial conversations. This poses great challenge for natural language understanding since figures of speech usually deviate from their ostensible meanings to express deeper semantic implications. Previous research lays emphasis on the literary aspect of figures and seldom provide a comprehensive exploration from a view of computational linguistics. In this paper, we first propose the concept of figurative unit, which is the carrier of a figure. Then we select 12 types of figures commonly used in Chinese, and build a Chinese corpus for Contextualized Figure Recognition (ConFiguRe). Different from previous token-level or sentence-level counterparts, ConFiguRe aims at extracting a figurative unit from discourse-level context, and classifying the figurative unit into the right figure type. On ConFiguRe, three tasks, i.e., figure extraction, figure type classification and figure recognition, are designed and the state-of-the-art techniques are utilized to implement the benchmarks. We conduct thorough experiments and show that all three tasks are challenging for existing models, thus requiring further research. Our dataset and code are publicly available at https://github.com/pku-tangent/ConFiguRe.

pdf bib
Is BERT Robust to Label Noise? A Study on Learning with Noisy Labels in Text Classification
Dawei Zhu | Michael A. Hedderich | Fangzhou Zhai | David Adelani | Dietrich Klakow
Proceedings of the Third Workshop on Insights from Negative Results in NLP

Incorrect labels in training data occur when human annotators make mistakes or when the data is generated via weak or distant supervision. It has been shown that complex noise-handling techniques - by modeling, cleaning or filtering the noisy instances - are required to prevent models from fitting this label noise. However, we show in this work that, for text classification tasks with modern NLP models like BERT, over a variety of noise types, existing noise-handling methods do not always improve its performance, and may even deteriorate it, suggesting the need for further investigation. We also back our observations with a comprehensive analysis.

2021

pdf bib
Neural Data-to-Text Generation with LM-based Text Augmentation
Ernie Chang | Xiaoyu Shen | Dawei Zhu | Vera Demberg | Hui Su
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

For many new application domains for data-to-text generation, the main obstacle in training neural models consists of a lack of training data. While usually large numbers of instances are available on the data side, often only very few text samples are available. To address this problem, we here propose a novel few-shot approach for this setting. Our approach automatically augments the data available for training by (i) generating new text samples based on replacing specific values by alternative ones from the same category, (ii) generating new text samples based on GPT-2, and (iii) proposing an automatic method for pairing the new text samples with data samples. As the text augmentation can introduce noise to the training data, we use cycle consistency as an objective, in order to make sure that a given data sample can be correctly reconstructed after having been formulated as text (and that text samples can be reconstructed from data). On both the E2E and WebNLG benchmarks, we show that this weakly supervised training paradigm is able to outperform fully supervised sequence-to-sequence models with less than 10% of the training set. By utilizing all annotated data, our model can boost the performance of a standard sequence-to-sequence model by over 5 BLEU points, establishing a new state-of-the-art on both datasets.

2020

pdf bib
Transfer Learning and Distant Supervision for Multilingual Transformer Models: A Study on African Languages
Michael A. Hedderich | David Adelani | Dawei Zhu | Jesujoba Alabi | Udia Markus | Dietrich Klakow
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Multilingual transformer models like mBERT and XLM-RoBERTa have obtained great improvements for many NLP tasks on a variety of languages. However, recent works also showed that results from high-resource languages could not be easily transferred to realistic, low-resource scenarios. In this work, we study trends in performance for different amounts of available resources for the three African languages Hausa, isiXhosa and on both NER and topic classification. We show that in combination with transfer learning or distant supervision, these models can achieve with as little as 10 or 100 labeled sentences the same performance as baselines with much more supervised training data. However, we also find settings where this does not hold. Our discussions and additional experiments on assumptions such as time and hardware restrictions highlight challenges and opportunities in low-resource learning.