Debarshi Sanyal


2024

pdf bib
Few-TK: A Dataset for Few-shot Scientific Typed Keyphrase Recognition
Avishek Lahiri | Pratyay Sarkar | Medha Sen | Debarshi Sanyal | Imon Mukherjee
Findings of the Association for Computational Linguistics: NAACL 2024

Scientific texts are distinctive from ordinary texts in quite a few aspects like their vocabulary and discourse structure. Consequently, Information Extraction (IE) tasks for scientific texts come with their own set of challenges. The classical definition of Named Entities restricts the inclusion of all scientific terms under its hood, which is why previous works have used the terms Named Entities and Keyphrases interchangeably. We suggest the rechristening of Named Entities for the scientific domain as Typed Keyphrases (TK), broadening their scope. We advocate for exploring this task in the few-shot domain due to the scarcity of labeled scientific IE data. Currently, no dataset exists for few-shot scientific Typed Keyphrase Recognition. To address this gap, we develop an annotation schema and present Few-TK, a dataset in the AI/ML field that includes scientific Typed Keyphrase annotations on abstracts of 500 research papers. To the best of our knowledge, this is the introductory few-shot Typed Keyphrase recognition dataset and only the second dataset structured specifically for few-shot NER, after Few-NERD. We report the results of several few-shot sequence-labelling models applied to our dataset. The data and code are available at https://github.com/AvishekLahiri/Few_TK.git

pdf bib
GINopic: Topic Modeling with Graph Isomorphism Network
Suman Adhya | Debarshi Sanyal
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Topic modeling is a widely used approach for analyzing and exploring large document collections. Recent research efforts have incorporated pre-trained contextualized language models, such as BERT embeddings, into topic modeling. However, they often neglect the intrinsic informational value conveyed by mutual dependencies between words. In this study, we introduce GINopic, a topic modeling framework based on graph isomorphism networks to capture the correlation between words. By conducting intrinsic (quantitative as well as qualitative) and extrinsic evaluations on diverse benchmark datasets, we demonstrate the effectiveness of GINopic compared to existing topic models and highlight its potential for advancing topic modeling.