Deepak Nathani


2024

pdf bib
Automatically Correcting Large Language Models: Surveying the Landscape of Diverse Automated Correction Strategies
Liangming Pan | Michael Saxon | Wenda Xu | Deepak Nathani | Xinyi Wang | William Yang Wang
Transactions of the Association for Computational Linguistics, Volume 12

While large language models (LLMs) have shown remarkable effectiveness in various NLP tasks, they are still prone to issues such as hallucination, unfaithful reasoning, and toxicity. A promising approach to rectify these flaws is correcting LLMs with feedback, where the LLM itself is prompted or guided with feedback to fix problems in its own output. Techniques leveraging automated feedback—either produced by the LLM itself (self-correction) or some external system—are of particular interest as they make LLM-based solutions more practical and deployable with minimal human intervention. This paper provides an exhaustive review of the recent advances in correcting LLMs with automated feedback, categorizing them into training-time, generation-time, and post-hoc approaches. We also identify potential challenges and future directions in this emerging field.

2023

pdf bib
MAF: Multi-Aspect Feedback for Improving Reasoning in Large Language Models
Deepak Nathani | David Wang | Liangming Pan | William Wang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Language Models (LMs) have shown impressive performance in various natural language tasks. However, when it comes to natural language reasoning, LMs still face challenges such as hallucination, generating incorrect intermediate reasoning steps, and making mathematical errors. Recent research has focused on enhancing LMs through *self-improvement* using feedback. Nevertheless, existing approaches relying on a single generic feedback source fail to address the diverse error types found in LM-generated reasoning chains. In this work, we propose **Multi-Aspect Feedback**, an iterative refinement framework that integrates multiple feedback modules, including frozen LMs and external tools, each focusing on a specific error category. Our experimental results demonstrate the efficacy of our approach to addressing several errors in the LM-generated reasoning chain and thus improving the overall performance of an LM in several reasoning tasks. We see an improvement of up to 20% in Mathematical Reasoning and up to 18% in Logical Entailment.

2022

pdf bib
Few-shot Controllable Style Transfer for Low-Resource Multilingual Settings
Kalpesh Krishna | Deepak Nathani | Xavier Garcia | Bidisha Samanta | Partha Talukdar
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Style transfer is the task of rewriting a sentence into a target style while approximately preserving content. While most prior literature assumes access to a large style-labelled corpus, recent work (Riley et al. 2021) has attempted “few-shot” style transfer using only 3-10 sentences at inference for style extraction. In this work we study a relevant low-resource setting: style transfer for languages where no style-labelled corpora are available. We notice that existing few-shot methods perform this task poorly, often copying inputs verbatim. We push the state-of-the-art for few-shot style transfer with a new method modeling the stylistic difference between paraphrases. When compared to prior work, our model achieves 2-3x better performance in formality transfer and code-mixing addition across seven languages. Moreover, our method is better at controlling the style transfer magnitude using an input scalar knob. We report promising qualitative results for several attribute transfer tasks (sentiment transfer, simplification, gender neutralization, text anonymization) all without retraining the model. Finally, we find model evaluation to be difficult due to the lack of datasets and metrics for many languages. To facilitate future research we crowdsource formality annotations for 4000 sentence pairs in four Indic languages, and use this data to design our automatic evaluations.

2019

pdf bib
Learning Attention-based Embeddings for Relation Prediction in Knowledge Graphs
Deepak Nathani | Jatin Chauhan | Charu Sharma | Manohar Kaul
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention-based feature embedding that captures both entity and relation features in any given entity’s neighborhood. Additionally, we also encapsulate relation clusters and multi-hop relations in our model. Our empirical study offers insights into the efficacy of our attention-based model and we show marked performance gains in comparison to state-of-the-art methods on all datasets.