Deepak Tunuguntla


2025

pdf bib
SHADES: Towards a Multilingual Assessment of Stereotypes in Large Language Models
Margaret Mitchell | Giuseppe Attanasio | Ioana Baldini | Miruna Clinciu | Jordan Clive | Pieter Delobelle | Manan Dey | Sil Hamilton | Timm Dill | Jad Doughman | Ritam Dutt | Avijit Ghosh | Jessica Zosa Forde | Carolin Holtermann | Lucie-Aimée Kaffee | Tanmay Laud | Anne Lauscher | Roberto L Lopez-Davila | Maraim Masoud | Nikita Nangia | Anaelia Ovalle | Giada Pistilli | Dragomir Radev | Beatrice Savoldi | Vipul Raheja | Jeremy Qin | Esther Ploeger | Arjun Subramonian | Kaustubh Dhole | Kaiser Sun | Amirbek Djanibekov | Jonibek Mansurov | Kayo Yin | Emilio Villa Cueva | Sagnik Mukherjee | Jerry Huang | Xudong Shen | Jay Gala | Hamdan Al-Ali | Tair Djanibekov | Nurdaulet Mukhituly | Shangrui Nie | Shanya Sharma | Karolina Stanczak | Eliza Szczechla | Tiago Timponi Torrent | Deepak Tunuguntla | Marcelo Viridiano | Oskar Van Der Wal | Adina Yakefu | Aurélie Névéol | Mike Zhang | Sydney Zink | Zeerak Talat
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Large Language Models (LLMs) reproduce and exacerbate the social biases present in their training data, and resources to quantify this issue are limited. While research has attempted to identify and mitigate such biases, most efforts have been concentrated around English, lagging the rapid advancement of LLMs in multilingual settings. In this paper, we introduce a new multilingual parallel dataset SHADES to help address this issue, designed for examining culturally-specific stereotypes that may be learned by LLMs. The dataset includes stereotypes from 20 regions around the world and 16 languages, spanning multiple identity categories subject to discrimination worldwide. We demonstrate its utility in a series of exploratory evaluations for both “base” and “instruction-tuned” language models. Our results suggest that stereotypes are consistently reflected across models and languages, with some languages and models indicating much stronger stereotype biases than others.

2022

pdf bib
You reap what you sow: On the Challenges of Bias Evaluation Under Multilingual Settings
Zeerak Talat | Aurélie Névéol | Stella Biderman | Miruna Clinciu | Manan Dey | Shayne Longpre | Sasha Luccioni | Maraim Masoud | Margaret Mitchell | Dragomir Radev | Shanya Sharma | Arjun Subramonian | Jaesung Tae | Samson Tan | Deepak Tunuguntla | Oskar Van Der Wal
Proceedings of BigScience Episode #5 -- Workshop on Challenges & Perspectives in Creating Large Language Models

Evaluating bias, fairness, and social impact in monolingual language models is a difficult task. This challenge is further compounded when language modeling occurs in a multilingual context. Considering the implication of evaluation biases for large multilingual language models, we situate the discussion of bias evaluation within a wider context of social scientific research with computational work. We highlight three dimensions of developing multilingual bias evaluation frameworks: (1) increasing transparency through documentation, (2) expanding targets of bias beyond gender, and (3) addressing cultural differences that exist between languages. We further discuss the power dynamics and consequences of training large language models and recommend that researchers remain cognizant of the ramifications of developing such technologies.