Defu Lian


pdf bib
Learning to Substitute Spans towards Improving Compositional Generalization
Zhaoyi Li | Ying Wei | Defu Lian
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Despite the rising prevalence of neural sequence models, recent empirical evidences suggest their deficiency in compositional generalization. One of the current de-facto solutions to this problem is compositional data augmentation, aiming to incur additional compositional inductive bias. Nonetheless, the improvement offered by existing handcrafted augmentation strategies is limited when successful systematic generalization of neural sequence models requires multi-grained compositional bias (i.e., not limited to either lexical or structural biases only) or differentiation of training sequences in an imbalanced difficulty distribution. To address the two challenges, we first propose a novel compositional augmentation strategy dubbed Span Substitution (SpanSub) that enables multi-grained composition of substantial substructures in the whole training set. Over and above that, we introduce the Learning to Substitute Span (L2S2) framework which empowers the learning of span substitution probabilities in SpanSub in an end-to-end manner by maximizing the loss of neural sequence models, so as to outweigh those challenging compositions with elusive concepts and novel surroundings. Our empirical results on three standard compositional generalization benchmarks, including SCAN, COGS and GeoQuery (with an improvement of at most 66.5%, 10.3%, 1.2%, respectively), demonstrate the superiority of SpanSub, L2S2 and their combination.

pdf bib
Towards Anytime Fine-tuning: Continually Pre-trained Language Models with Hypernetwork Prompts
Gangwei Jiang | Caigao Jiang | Siqiao Xue | James Zhang | Jun Zhou | Defu Lian | Ying Wei
Findings of the Association for Computational Linguistics: EMNLP 2023

Continual pre-training has been urgent for adapting a pre-trained model to a multitude of domains and tasks in the fast-evolving world. In practice, a continually pre-trained model is expected to demonstrate not only greater capacity when fine-tuned on pre-trained domains but also a non-decreasing performance on unseen ones. In this work, we first investigate such anytime fine-tuning effectiveness of existing continual pre-training approaches, concluding with unanimously decreased performance on unseen domains. To this end, we propose a prompt-guided continual pre-training method, where we train a hypernetwork to generate domain-specific prompts by both agreement and disagreement losses. The agreement loss maximally preserves the generalization of a pre-trained model to new domains, and the disagreement one guards the exclusiveness of the generated hidden states for each domain. Remarkably, prompts by the hypernetwork alleviate the domain identity when fine-tuning and promote knowledge transfer across domains. Our method achieved improvements of 3.57% and 3.4% on two real-world datasets (including domain shift and temporal shift), respectively, demonstrating its efficacy.


pdf bib
Investigating Data Variance in Evaluations of Automatic Machine Translation Metrics
Jiannan Xiang | Huayang Li | Yahui Liu | Lemao Liu | Guoping Huang | Defu Lian | Shuming Shi
Findings of the Association for Computational Linguistics: ACL 2022

Current practices in metric evaluation focus on one single dataset, e.g., Newstest dataset in each year’s WMT Metrics Shared Task. However, in this paper, we qualitatively and quantitatively show that the performances of metrics are sensitive to data. The ranking of metrics varies when the evaluation is conducted on different datasets. Then this paper further investigates two potential hypotheses, i.e., insignificant data points and the deviation of i.i.d assumption, which may take responsibility for the issue of data variance. In conclusion, our findings suggest that when evaluating automatic translation metrics, researchers should take data variance into account and be cautious to report the results on unreliable datasets, because it may leads to inconsistent results with most of the other datasets.

pdf bib
Visualizing the Relationship Between Encoded Linguistic Information and Task Performance
Jiannan Xiang | Huayang Li | Defu Lian | Guoping Huang | Taro Watanabe | Lemao Liu
Findings of the Association for Computational Linguistics: ACL 2022

Probing is popular to analyze whether linguistic information can be captured by a well-trained deep neural model, but it is hard to answer how the change of the encoded linguistic information will affect task performance. To this end, we study the dynamic relationship between the encoded linguistic information and task performance from the viewpoint of Pareto Optimality. Its key idea is to obtain a set of models which are Pareto-optimal in terms of both objectives. From this viewpoint, we propose a method to optimize the Pareto-optimal models by formalizing it as a multi-objective optimization problem. We conduct experiments on two popular NLP tasks, i.e., machine translation and language modeling, and investigate the relationship between several kinds of linguistic information and task performances. Experimental results demonstrate that the proposed method is better than a baseline method. Our empirical findings suggest that some syntactic information is helpful for NLP tasks whereas encoding more syntactic information does not necessarily lead to better performance, because the model architecture is also an important factor.


pdf bib
Matching-oriented Embedding Quantization For Ad-hoc Retrieval
Shitao Xiao | Zheng Liu | Yingxia Shao | Defu Lian | Xing Xie
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Product quantization (PQ) is a widely used technique for ad-hoc retrieval. Recent studies propose supervised PQ, where the embedding and quantization models can be jointly trained with supervised learning. However, there is a lack of appropriate formulation of the joint training objective; thus, the improvements over previous non-supervised baselines are limited in reality. In this work, we propose the Matching-oriented Product Quantization (MoPQ), where a novel objective Multinoulli Contrastive Loss (MCL) is formulated. With the minimization of MCL, we are able to maximize the matching probability of query and ground-truth key, which contributes to the optimal retrieval accuracy. Given that the exact computation of MCL is intractable due to the demand of vast contrastive samples, we further propose the Differentiable Cross-device Sampling (DCS), which significantly augments the contrastive samples for precise approximation of MCL. We conduct extensive experimental studies on four real-world datasets, whose results verify the effectiveness of MoPQ. The code is available at

pdf bib
Assessing Dialogue Systems with Distribution Distances
Jiannan Xiang | Yahui Liu | Deng Cai | Huayang Li | Defu Lian | Lemao Liu
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021