Denny Zhou


2021

pdf bib
Fast WordPiece Tokenization
Xinying Song | Alex Salcianu | Yang Song | Dave Dopson | Denny Zhou
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Tokenization is a fundamental preprocessing step for almost all NLP tasks. In this paper, we propose efficient algorithms for the WordPiece tokenization used in BERT, from single-word tokenization to general text (e.g., sentence) tokenization. When tokenizing a single word, WordPiece uses a longest-match-first strategy, known as maximum matching. The best known algorithms so far are O(nˆ2) (where n is the input length) or O(nm) (where m is the maximum vocabulary token length). We propose a novel algorithm whose tokenization complexity is strictly O(n). Our method is inspired by the Aho-Corasick algorithm. We introduce additional linkages on top of the trie built from the vocabulary, allowing smart transitions when the trie matching cannot continue. For general text, we further propose an algorithm that combines pre-tokenization (splitting the text into words) and our linear-time WordPiece method into a single pass. Experimental results show that our method is 8.2x faster than HuggingFace Tokenizers and 5.1x faster than TensorFlow Text on average for general text tokenization.

pdf bib
Extremely Small BERT Models from Mixed-Vocabulary Training
Sanqiang Zhao | Raghav Gupta | Yang Song | Denny Zhou
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Pretrained language models like BERT have achieved good results on NLP tasks, but are impractical on resource-limited devices due to memory footprint. A large fraction of this footprint comes from the input embeddings with large input vocabulary and embedding dimensions. Existing knowledge distillation methods used for model compression cannot be directly applied to train student models with reduced vocabulary sizes. To this end, we propose a distillation method to align the teacher and student embeddings via mixed-vocabulary training. Our method compresses BERT-LARGE to a task-agnostic model with smaller vocabulary and hidden dimensions, which is an order of magnitude smaller than other distilled BERT models and offers a better size-accuracy trade-off on language understanding benchmarks as well as a practical dialogue task.

2020

pdf bib
MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices
Zhiqing Sun | Hongkun Yu | Xiaodan Song | Renjie Liu | Yiming Yang | Denny Zhou
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Natural Language Processing (NLP) has recently achieved great success by using huge pre-trained models with hundreds of millions of parameters. However, these models suffer from heavy model sizes and high latency such that they cannot be deployed to resource-limited mobile devices. In this paper, we propose MobileBERT for compressing and accelerating the popular BERT model. Like the original BERT, MobileBERT is task-agnostic, that is, it can be generically applied to various downstream NLP tasks via simple fine-tuning. Basically, MobileBERT is a thin version of BERT_LARGE, while equipped with bottleneck structures and a carefully designed balance between self-attentions and feed-forward networks. To train MobileBERT, we first train a specially designed teacher model, an inverted-bottleneck incorporated BERT_LARGE model. Then, we conduct knowledge transfer from this teacher to MobileBERT. Empirical studies show that MobileBERT is 4.3x smaller and 5.5x faster than BERT_BASE while achieving competitive results on well-known benchmarks. On the natural language inference tasks of GLUE, MobileBERT achieves a GLUE score of 77.7 (0.6 lower than BERT_BASE), and 62 ms latency on a Pixel 4 phone. On the SQuAD v1.1/v2.0 question answering task, MobileBERT achieves a dev F1 score of 90.0/79.2 (1.5/2.1 higher than BERT_BASE).