Derek Hoiem


pdf bib
WebWISE: Unlocking Web Interface Control for LLMs via Sequential Exploration
Heyi Tao | Sethuraman T V | Michal Shlapentokh-Rothman | Tanmay Gupta | Heng Ji | Derek Hoiem
Findings of the Association for Computational Linguistics: NAACL 2024

This paper investigates using Large Language Models (LLMs) to automatically perform web software tasks using click, scroll, and text in- put operations. Previous approaches, such as reinforcement learning (RL) or imitation learning, are inefficient to train and task-specific. Our method uses filtered Document Object Model (DOM) elements as observations and performs tasks step-by-step, sequentially generating small programs based on the current observations. We use in-context learning, either benefiting from a single manually provided example, or an automatically generated example based on a successful zero-shot trial. We evaluate our proposed method on the MiniWob++ benchmark. With only one in-context example, our WebWISE method using gpt-3.5-turbo achieves similar or better performance than other methods that require many demonstrations or trials.


pdf bib
ViStruct: Visual Structural Knowledge Extraction via Curriculum Guided Code-Vision Representation
Yangyi Chen | Xingyao Wang | Manling Li | Derek Hoiem | Heng Ji
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

State-of-the-art vision-language models (VLMs) still have limited performance in structural knowledge extraction, such as relations between objects. In this work, we present ViStruct, a training framework to learn VLMs for effective visual structural knowledge extraction. Two novel designs are incorporated. First, we propose to leverage the inherent structure of programming language to depict visual structural information. This approach enables explicit and consistent representation of visual structural information of multiple granularities, such as concepts, relations, and events, in a well-organized structured format. Second, we introduce curriculum-based learning for VLMs to progressively comprehend visual structures, from fundamental visual concepts to intricate event structures. Our intuition is that lower-level knowledge may contribute to complex visual structure understanding. Furthermore, we compile and release a collection of datasets tailored for visual structural knowledge extraction. We adopt a weakly-supervised approach to directly generate visual event structures from captions for ViStruct training, capitalizing on abundant image-caption pairs from the web. In experiments, we evaluate ViStruct on visual structure prediction tasks, demonstrating its effectiveness in improving the understanding of visual structures. The code will be made public to facilitate future research.