Desmond Ong
2023
Evaluating Subjective Cognitive Appraisals of Emotions from Large Language Models
Hongli Zhan
|
Desmond Ong
|
Junyi Jessy Li
Findings of the Association for Computational Linguistics: EMNLP 2023
The emotions we experience involve complex processes; besides physiological aspects, research in psychology has studied cognitive appraisals where people assess their situations subjectively, according to their own values (Scherer, 2005). Thus, the same situation can often result in different emotional experiences. While the detection of emotion is a well-established task, there is very limited work so far on the automatic prediction of cognitive appraisals. This work fills the gap by presenting CovidET-Appraisals, the most comprehensive dataset to-date that assesses 24 appraisal dimensions, each with a natural language rationale, across 241 Reddit posts. CovidET-Appraisals presents an ideal testbed to evaluate the ability of large language models — excelling at a wide range of NLP tasks — to automatically assess and explain cognitive appraisals. We found that while the best models are performant, open-sourced LLMs fall short at this task, presenting a new challenge in the future development of emotionally intelligent models. We release our dataset at https://github.com/honglizhan/CovidET-Appraisals-Public.
2021
Not All Negatives are Equal: Label-Aware Contrastive Loss for Fine-grained Text Classification
Varsha Suresh
|
Desmond Ong
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
Fine-grained classification involves dealing with datasets with larger number of classes with subtle differences between them. Guiding the model to focus on differentiating dimensions between these commonly confusable classes is key to improving performance on fine-grained tasks. In this work, we analyse the contrastive fine-tuning of pre-trained language models on two fine-grained text classification tasks, emotion classification and sentiment analysis. We adaptively embed class relationships into a contrastive objective function to help differently weigh the positives and negatives, and in particular, weighting closely confusable negatives more than less similar negative examples. We find that Label-aware Contrastive Loss outperforms previous contrastive methods, in the presence of larger number and/or more confusable classes, and helps models to produce output distributions that are more differentiated.
2020
Structured Self-AttentionWeights Encode Semantics in Sentiment Analysis
Zhengxuan Wu
|
Thanh-Son Nguyen
|
Desmond Ong
Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP
Neural attention, especially the self-attention made popular by the Transformer, has become the workhorse of state-of-the-art natural language processing (NLP) models. Very recent work suggests that the self-attention in the Transformer encodes syntactic information; Here, we show that self-attention scores encode semantics by considering sentiment analysis tasks. In contrast to gradient-based feature attribution methods, we propose a simple and effective Layer-wise Attention Tracing (LAT) method to analyze structured attention weights. We apply our method to Transformer models trained on two tasks that have surface dissimilarities, but share common semantics—sentiment analysis of movie reviews and time-series valence prediction in life story narratives. Across both tasks, words with high aggregated attention weights were rich in emotional semantics, as quantitatively validated by an emotion lexicon labeled by human annotators. Our results show that structured attention weights encode rich semantics in sentiment analysis, and match human interpretations of semantics.