Dhairya Dalal


pdf bib
CALM-Bench: A Multi-task Benchmark for Evaluating Causality-Aware Language Models
Dhairya Dalal | Paul Buitelaar | Mihael Arcan
Findings of the Association for Computational Linguistics: EACL 2023

Causal reasoning is a critical component of human cognition and is required across a range of question-answering (QA) tasks (such as abductive reasoning, commonsense QA, and procedural reasoning). Research on causal QA has been underdefined, task-specific, and limited in complexity. Recent advances in foundation language models (such as BERT, ERNIE, and T5) have shown the efficacy of pre-trained models across diverse QA tasks. However, there is limited research exploring the causal reasoning capabilities of those language models and no standard evaluation benchmark. To unify causal QA research, we propose CALM-Bench, a multi-task benchmark for evaluating causality-aware language models (CALM). We present a standardized definition of causal QA tasks and show empirically that causal reasoning can be generalized and transferred across different QA tasks. Additionally, we share a strong multi-task baseline model which outperforms single-task fine-tuned models on the CALM-Bench tasks.


pdf bib
Enhancing Multiple-Choice Question Answering with Causal Knowledge
Dhairya Dalal | Mihael Arcan | Paul Buitelaar
Proceedings of Deep Learning Inside Out (DeeLIO): The 2nd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures

The task of causal question answering aims to reason about causes and effects over a provided real or hypothetical premise. Recent approaches have converged on using transformer-based language models to solve question answering tasks. However, pretrained language models often struggle when external knowledge is not present in the premise or when additional context is required to answer the question. To the best of our knowledge, no prior work has explored the efficacy of augmenting pretrained language models with external causal knowledge for multiple-choice causal question answering. In this paper, we present novel strategies for the representation of causal knowledge. Our empirical results demonstrate the efficacy of augmenting pretrained models with external causal knowledge. We show improved performance on the COPA (Choice of Plausible Alternatives) and WIQA (What If Reasoning Over Procedural Text) benchmark tasks. On the WIQA benchmark, our approach is competitive with the state-of-the-art and exceeds it within the evaluation subcategories of In-Paragraph and Out-of-Paragraph perturbations.