Dhanush Bekal


2023

pdf bib
AdaBERT-CTC: Leveraging BERT-CTC for Text-Only Domain Adaptation in ASR
Tyler Vuong | Karel Mundnich | Dhanush Bekal | Veera Elluru | Srikanth Ronanki | Sravan Bodapati
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track

End-to-end (E2E) automatic speech recognition (ASR) models are becoming increasingly popular in commercial applications, such as virtual assistants, closed captioning, and dictation systems. The accuracy of the ASR is crucial to their success. However, E2E models still struggle to recognize out-of-domain words such as proper nouns and domain-specific terms. In this paper we introduce AdaBERT-CTC, a domain adaptation technique that relies solely on textual data. Our method allows for text-only adaptation by fine-tuning a pre-trained self-supervised text encoder model. Additionally, we show that our method can be made parameter-efficient by adding bottleneck adapters to the pre-trained model. This allows for adaptation with less than a 5% increase in parameters and minimal computational overhead during inference. We demonstrate that our approach outperforms the base BERT-CTC model by up to 14% relative word error rate improvement on several out-of-domain, publicly available datasets.

2019

pdf bib
Text Generation from Knowledge Graphs with Graph Transformers
Rik Koncel-Kedziorski | Dhanush Bekal | Yi Luan | Mirella Lapata | Hannaneh Hajishirzi
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Generating texts which express complex ideas spanning multiple sentences requires a structured representation of their content (document plan), but these representations are prohibitively expensive to manually produce. In this work, we address the problem of generating coherent multi-sentence texts from the output of an information extraction system, and in particular a knowledge graph. Graphical knowledge representations are ubiquitous in computing, but pose a significant challenge for text generation techniques due to their non-hierarchical nature, collapsing of long-distance dependencies, and structural variety. We introduce a novel graph transforming encoder which can leverage the relational structure of such knowledge graphs without imposing linearization or hierarchical constraints. Incorporated into an encoder-decoder setup, we provide an end-to-end trainable system for graph-to-text generation that we apply to the domain of scientific text. Automatic and human evaluations show that our technique produces more informative texts which exhibit better document structure than competitive encoder-decoder methods.