Dianbo Sui


2022

pdf bib
CogKGE: A Knowledge Graph Embedding Toolkit and Benchmark for Representing Multi-source and Heterogeneous Knowledge
Zhuoran Jin | Tianyi Men | Hongbang Yuan | Zhitao He | Dianbo Sui | Chenhao Wang | Zhipeng Xue | Yubo Chen | Jun Zhao
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

In this paper, we propose CogKGE, a knowledge graph embedding (KGE) toolkit, which aims to represent multi-source and heterogeneous knowledge. For multi-source knowledge, unlike existing methods that mainly focus on entity-centric knowledge, CogKGE also supports the representations of event-centric, commonsense and linguistic knowledge. For heterogeneous knowledge, besides structured triple facts, CogKGE leverages additional unstructured information, such as text descriptions, node types and temporal information, to enhance the meaning of embeddings. Designing CogKGE aims to provide a unified programming framework for KGE tasks and a series of knowledge representations for downstream tasks. As a research framework, CogKGE consists of five parts, including core, data, model, knowledge and adapter module. As a knowledge discovery toolkit, CogKGE provides pre-trained embedders to discover new facts, cluster entities and check facts. Furthermore, we construct two benchmark datasets for further research on multi-source heterogeneous KGE tasks: EventKG240K and CogNet360K. We also release an online system to discover knowledge visually. Source code, datasets and pre-trained embeddings are publicly available at GitHub, with a short instruction video.

2021

pdf bib
Set Generation Networks for End-to-End Knowledge Base Population
Dianbo Sui | Chenhao Wang | Yubo Chen | Kang Liu | Jun Zhao | Wei Bi
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

The task of knowledge base population (KBP) aims to discover facts about entities from texts and expand a knowledge base with these facts. Previous studies shape end-to-end KBP as a machine translation task, which is required to convert unordered fact into a sequence according to a pre-specified order. However, the facts stated in a sentence are unordered in essence. In this paper, we formulate end-to-end KBP as a direct set generation problem, avoiding considering the order of multiple facts. To solve the set generation problem, we propose networks featured by transformers with non-autoregressive parallel decoding. Unlike previous approaches that use an autoregressive decoder to generate facts one by one, the proposed networks can directly output the final set of facts in one shot. Furthermore, to train the networks, we also design a set-based loss that forces unique predictions via bipartite matching. Compared with cross-entropy loss that highly penalizes small shifts in fact order, the proposed bipartite matching loss is invariant to any permutation of predictions. Benefiting from getting rid of the burden of predicting the order of multiple facts, our proposed networks achieve state-of-the-art (SoTA) performance on two benchmark datasets.

pdf bib
Distantly Supervised Relation Extraction in Federated Settings
Dianbo Sui | Yubo Chen | Kang Liu | Jun Zhao
Findings of the Association for Computational Linguistics: EMNLP 2021

In relation extraction, distant supervision is widely used to automatically label a large-scale training dataset by aligning a knowledge base with unstructured text. Most existing studies in this field have assumed there is a great deal of centralized unstructured text. However, in practice, texts are usually distributed on different platforms and cannot be centralized due to privacy restrictions. Therefore, it is worthwhile to investigate distant supervision in the federated learning paradigm, which decouples the training of the model from the need for direct access to raw texts. However, overcoming label noise of distant supervision becomes more difficult in federated settings, because texts containing the same entity pair scatter around different platforms. In this paper, we propose a federated denoising framework to suppress label noise in federated settings. The key of this framework is a multiple instance learning based denoising method that is able to select reliable sentences via cross-platform collaboration. Various experiments on New York Times dataset and miRNA gene regulation relation dataset demonstrate the effectiveness of the proposed method.

pdf bib
Knowledge Guided Metric Learning for Few-Shot Text Classification
Dianbo Sui | Yubo Chen | Binjie Mao | Delai Qiu | Kang Liu | Jun Zhao
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Humans can distinguish new categories very efficiently with few examples, largely due to the fact that human beings can leverage knowledge obtained from relevant tasks. However, deep learning based text classification model tends to struggle to achieve satisfactory performance when labeled data are scarce. Inspired by human intelligence, we propose to introduce external knowledge into few-shot learning to imitate human knowledge. A novel parameter generator network is investigated to this end, which is able to use the external knowledge to generate different metrics for different tasks. Armed with this network, similar tasks can use similar metrics while different tasks use different metrics. Through experiments, we demonstrate that our method outperforms the SoTA few-shot text classification models.

pdf bib
A Large-Scale Chinese Multimodal NER Dataset with Speech Clues
Dianbo Sui | Zhengkun Tian | Yubo Chen | Kang Liu | Jun Zhao
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

In this paper, we aim to explore an uncharted territory, which is Chinese multimodal named entity recognition (NER) with both textual and acoustic contents. To achieve this, we construct a large-scale human-annotated Chinese multimodal NER dataset, named CNERTA. Our corpus totally contains 42,987 annotated sentences accompanying by 71 hours of speech data. Based on this dataset, we propose a family of strong and representative baseline models, which can leverage textual features or multimodal features. Upon these baselines, to capture the natural monotonic alignment between the textual modality and the acoustic modality, we further propose a simple multimodal multitask model by introducing a speech-to-text alignment auxiliary task. Through extensive experiments, we observe that: (1) Progressive performance boosts as we move from unimodal to multimodal, verifying the necessity of integrating speech clues into Chinese NER. (2) Our proposed model yields state-of-the-art (SoTA) results on CNERTA, demonstrating its effectiveness. For further research, the annotated dataset is publicly available at http://github.com/DianboWork/CNERTA.

pdf bib
Document-level Event Extraction via Parallel Prediction Networks
Hang Yang | Dianbo Sui | Yubo Chen | Kang Liu | Jun Zhao | Taifeng Wang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Document-level event extraction (DEE) is indispensable when events are described throughout a document. We argue that sentence-level extractors are ill-suited to the DEE task where event arguments always scatter across sentences and multiple events may co-exist in a document. It is a challenging task because it requires a holistic understanding of the document and an aggregated ability to assemble arguments across multiple sentences. In this paper, we propose an end-to-end model, which can extract structured events from a document in a parallel manner. Specifically, we first introduce a document-level encoder to obtain the document-aware representations. Then, a multi-granularity non-autoregressive decoder is used to generate events in parallel. Finally, to train the entire model, a matching loss function is proposed, which can bootstrap a global optimization. The empirical results on the widely used DEE dataset show that our approach significantly outperforms current state-of-the-art methods in the challenging DEE task. Code will be available at https://github.com/HangYang-NLP/DE-PPN.

pdf bib
CogIE: An Information Extraction Toolkit for Bridging Texts and CogNet
Zhuoran Jin | Yubo Chen | Dianbo Sui | Chenhao Wang | Zhipeng Xue | Jun Zhao
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations

CogNet is a knowledge base that integrates three types of knowledge: linguistic knowledge, world knowledge and commonsense knowledge. In this paper, we propose an information extraction toolkit, called CogIE, which is a bridge connecting raw texts and CogNet. CogIE has three features: versatile, knowledge-grounded and extensible. First, CogIE is a versatile toolkit with a rich set of functional modules, including named entity recognition, entity typing, entity linking, relation extraction, event extraction and frame-semantic parsing. Second, as a knowledge-grounded toolkit, CogIE can ground the extracted facts to CogNet and leverage different types of knowledge to enrich extracted results. Third, for extensibility, owing to the design of three-tier architecture, CogIE is not only a plug-and-play toolkit for developers but also an extensible programming framework for researchers. We release an open-access online system to visually extract information from texts. Source code, datasets and pre-trained models are publicly available at GitHub, with a short instruction video.

2020

pdf bib
Graph-Based Knowledge Integration for Question Answering over Dialogue
Jian Liu | Dianbo Sui | Kang Liu | Jun Zhao
Proceedings of the 28th International Conference on Computational Linguistics

Question answering over dialogue, a specialized machine reading comprehension task, aims to comprehend a dialogue and to answer specific questions. Despite many advances, existing approaches for this task did not consider dialogue structure and background knowledge (e.g., relationships between speakers). In this paper, we introduce a new approach for the task, featured by its novelty in structuring dialogue and integrating background knowledge for reasoning. Specifically, different from previous “structure-less” approaches, our method organizes a dialogue as a “relational graph”, using edges to represent relationships between entities. To encode this relational graph, we devise a relational graph convolutional network (R-GCN), which can traverse the graph’s topological structure and effectively encode multi-relational knowledge for reasoning. The extensive experiments have justified the effectiveness of our approach over competitive baselines. Moreover, a deeper analysis shows that our model is better at tackling complex questions requiring relational reasoning and defending adversarial attacks with distracting sentences.

pdf bib
FedED: Federated Learning via Ensemble Distillation for Medical Relation Extraction
Dianbo Sui | Yubo Chen | Jun Zhao | Yantao Jia | Yuantao Xie | Weijian Sun
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Unlike other domains, medical texts are inevitably accompanied by private information, so sharing or copying these texts is strictly restricted. However, training a medical relation extraction model requires collecting these privacy-sensitive texts and storing them on one machine, which comes in conflict with privacy protection. In this paper, we propose a privacy-preserving medical relation extraction model based on federated learning, which enables training a central model with no single piece of private local data being shared or exchanged. Though federated learning has distinct advantages in privacy protection, it suffers from the communication bottleneck, which is mainly caused by the need to upload cumbersome local parameters. To overcome this bottleneck, we leverage a strategy based on knowledge distillation. Such a strategy uses the uploaded predictions of ensemble local models to train the central model without requiring uploading local parameters. Experiments on three publicly available medical relation extraction datasets demonstrate the effectiveness of our method.

2019

pdf bib
Leverage Lexical Knowledge for Chinese Named Entity Recognition via Collaborative Graph Network
Dianbo Sui | Yubo Chen | Kang Liu | Jun Zhao | Shengping Liu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

The lack of word boundaries information has been seen as one of the main obstacles to develop a high performance Chinese named entity recognition (NER) system. Fortunately, the automatically constructed lexicon contains rich word boundaries information and word semantic information. However, integrating lexical knowledge in Chinese NER tasks still faces challenges when it comes to self-matched lexical words as well as the nearest contextual lexical words. We present a Collaborative Graph Network to solve these challenges. Experiments on various datasets show that our model not only outperforms the state-of-the-art (SOTA) results, but also achieves a speed that is six to fifteen times faster than that of the SOTA model.