Diane Brentari


pdf bib
Searching for fingerspelled content in American Sign Language
Bowen Shi | Diane Brentari | Greg Shakhnarovich | Karen Livescu
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Natural language processing for sign language video—including tasks like recognition, translation, and search—is crucial for making artificial intelligence technologies accessible to deaf individuals, and is gaining research interest in recent years. In this paper, we address the problem of searching for fingerspelled keywords or key phrases in raw sign language videos. This is an important task since significant content in sign language is often conveyed via fingerspelling, and to our knowledge the task has not been studied before. We propose an end-to-end model for this task, FSS-Net, that jointly detects fingerspelling and matches it to a text sequence. Our experiments, done on a large public dataset of ASL fingerspelling in the wild, show the importance of fingerspelling detection as a component of a search and retrieval model. Our model significantly outperforms baseline methods adapted from prior work on related tasks.

pdf bib
Open-Domain Sign Language Translation Learned from Online Video
Bowen Shi | Diane Brentari | Gregory Shakhnarovich | Karen Livescu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Existing work on sign language translation – that is, translation from sign language videos into sentences in a written language – has focused mainly on (1) data collected in a controlled environment or (2) data in a specific domain, which limits the applicability to real-world settings. In this paper, we introduce OpenASL, a large-scale American Sign Language (ASL) - English dataset collected from online video sites (e.g., YouTube).OpenASL contains 288 hours of ASL videos in multiple domains from over 200 signers and is the largest publicly available ASL translation dataset to date. To tackle the challenges of sign language translation in realistic settings and without glosses, we propose a set of techniques including sign search as a pretext task for pre-training and fusion of mouthing and handshape features. The proposed techniques produce consistent and large improvements in translation quality, over baseline models basedon prior work.

pdf bib
TTIC’s WMT-SLT 22 Sign Language Translation System
Bowen Shi | Diane Brentari | Gregory Shakhnarovich | Karen Livescu
Proceedings of the Seventh Conference on Machine Translation (WMT)

We describe TTIC’s model submission to WMT-SLT 2022 task on sign language translation (Swiss-German Sign Language (DSGS) - German). Our model consists of an I3D backbone for image encoding and a Transformerbased encoder-decoder model for sequence modeling. The I3D is pre-trained with isolated sign recognition using the WLASL dataset. The model is based on RGB images alone and does not rely on the pre-extracted human pose. We explore a few different strategies for model training in this paper. Our system achieves 0.3 BLEU score and 0.195 Chrf score on the official test set.