Dibyanayan Bandyopadhyay


pdf bib
A Deep Transfer Learning Method for Cross-Lingual Natural Language Inference
Dibyanayan Bandyopadhyay | Arkadipta De | Baban Gain | Tanik Saikh | Asif Ekbal
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Natural Language Inference (NLI), also known as Recognizing Textual Entailment (RTE), has been one of the central tasks in Artificial Intelligence (AI) and Natural Language Processing (NLP). RTE between the two pieces of texts is a crucial problem, and it adds further challenges when involving two different languages, i.e., in the cross-lingual scenario. This paper proposes an effective transfer learning approach for cross-lingual NLI. We perform experiments on English-Hindi language pairs in the cross-lingual setting to find out that our novel loss formulation could enhance the performance of the baseline model by up to 2%. To assess the effectiveness of our method further, we perform additional experiments on every possible language pair using four European languages, namely French, German, Bulgarian, and Turkish, on top of XNLI dataset. Evaluation results yield up to 10% performance improvement over the respective baseline models, in some cases surpassing the state-of-the-art (SOTA). It is also to be noted that our proposed model has 110M parameters which is much lesser than the SOTA model having 220M parameters. Finally, we argue that our transfer learning-based loss objective is model agnostic and thus can be used with other deep learning-based architectures for cross-lingual NLI.


pdf bib
IITP at WAT 2021: System description for English-Hindi Multimodal Translation Task
Baban Gain | Dibyanayan Bandyopadhyay | Asif Ekbal
Proceedings of the 8th Workshop on Asian Translation (WAT2021)

Neural Machine Translation (NMT) is a predominant machine translation technology nowadays because of its end-to-end trainable flexibility. However, NMT still struggles to translate properly in low-resource settings specifically on distant language pairs. One way to overcome this is to use the information from other modalities if available. The idea is that despite differences in languages, both the source and target language speakers see the same thing and the visual representation of both the source and target is the same, which can positively assist the system. Multimodal information can help the NMT system to improve the translation by removing ambiguity on some phrases or words. We participate in the 8th Workshop on Asian Translation (WAT - 2021) for English-Hindi multimodal translation task and achieve 42.47 and 37.50 BLEU points for Evaluation and Challenge subset, respectively.

pdf bib
Experiences of Adapting Multimodal Machine Translation Techniques for Hindi
Baban Gain | Dibyanayan Bandyopadhyay | Asif Ekbal
Proceedings of the First Workshop on Multimodal Machine Translation for Low Resource Languages (MMTLRL 2021)

Multimodal Neural Machine Translation (MNMT) is an interesting task in natural language processing (NLP) where we use visual modalities along with a source sentence to aid the source to target translation process. Recently, there has been a lot of works in MNMT frameworks to boost the performance of standalone Machine Translation tasks. Most of the prior works in MNMT tried to perform translation between two widely known languages (e.g. English-to-German, English-to-French ). In this paper, We explore the effectiveness of different state-of-the-art MNMT methods, which use various data oriented techniques including multimodal pre-training, for low resource languages. Although the existing methods works well on high resource languages, usability of those methods on low-resource languages is unknown. In this paper, we evaluate the existing methods on Hindi and report our findings.


pdf bib
IITP at MEDIQA 2019: Systems Report for Natural Language Inference, Question Entailment and Question Answering
Dibyanayan Bandyopadhyay | Baban Gain | Tanik Saikh | Asif Ekbal
Proceedings of the 18th BioNLP Workshop and Shared Task

This paper presents the experiments accomplished as a part of our participation in the MEDIQA challenge, an (Abacha et al., 2019) shared task. We participated in all the three tasks defined in this particular shared task. The tasks are viz. i. Natural Language Inference (NLI) ii. Recognizing Question Entailment(RQE) and their application in medical Question Answering (QA). We submitted runs using multiple deep learning based systems (runs) for each of these three tasks. We submitted five system results in each of the NLI and RQE tasks, and four system results for the QA task. The systems yield encouraging results in all the three tasks. The highest performance obtained in NLI, RQE and QA tasks are 81.8%, 53.2%, and 71.7%, respectively.