Diego Alves


pdf bib
Typological Approach to Improve Dependency Parsing for Croatian Language
Diego Alves | Boke Bekavac | Marko Tadić
Proceedings of the 20th International Workshop on Treebanks and Linguistic Theories (TLT, SyntaxFest 2021)


pdf bib
Evaluating Language Tools for Fifteen EU-official Under-resourced Languages
Diego Alves | Gaurish Thakkar | Marko Tadić
Proceedings of the 12th Language Resources and Evaluation Conference

This article presents the results of the evaluation campaign of language tools available for fifteen EU-official under-resourced languages. The evaluation was conducted within the MSC ITN CLEOPATRA action that aims at building the cross-lingual event-centric knowledge processing on top of the application of linguistic processing chains (LPCs) for at least 24 EU-official languages. In this campaign, we concentrated on three existing NLP platforms (Stanford CoreNLP, NLP Cube, UDPipe) that all provide models for under-resourced languages and in this first run we covered 15 under-resourced languages for which the models were available. We present the design of the evaluation campaign and present the results as well as discuss them. We considered the difference between reported and our tested results within a single percentage point as being within the limits of acceptable tolerance and thus consider this result as reproducible. However, for a number of languages, the results are below what was reported in the literature, and in some cases, our testing results are even better than the ones reported previously. Particularly problematic was the evaluation of NERC systems. One of the reasons is the absence of universally or cross-lingually applicable named entities classification scheme that would serve the NERC task in different languages analogous to the Universal Dependency scheme in parsing task. To build such a scheme has become one of our the future research directions.

pdf bib
Natural Language Processing Chains Inside a Cross-lingual Event-Centric Knowledge Pipeline for European Union Under-resourced Languages
Diego Alves | Gaurish Thakkar | Marko Tadić
Proceedings of the 1st Joint Workshop on Spoken Language Technologies for Under-resourced languages (SLTU) and Collaboration and Computing for Under-Resourced Languages (CCURL)

This article presents the strategy for developing a platform containing Language Processing Chains for European Union languages, consisting of Tokenization to Parsing, also including Named Entity recognition and with addition of Sentiment Analysis. These chains are part of the first step of an event-centric knowledge processing pipeline whose aim is to process multilingual media information about major events that can cause an impact in Europe and the rest of the world. Due to the differences in terms of availability of language resources for each language, we have built this strategy in three steps, starting with processing chains for the well-resourced languages and finishing with the development of new modules for the under-resourced ones. In order to classify all European Union official languages in terms of resources, we have analysed the size of annotated corpora as well as the existence of pre-trained models in mainstream Language Processing tools, and we have combined this information with the proposed classification published at META-NET whitepaper series.