As the number of language models has increased, various benchmarks have been suggested to assess the proficiency of the models in natural language understanding. However, there is a lack of such a benchmark in Vietnamese due to the difficulty in accessing natural language processing datasets or the scarcity of task-specific datasets. **ViGLUE**, the proposed dataset collection, is a **Vi**etnamese **G**eneral **L**anguage **U**nderstanding **E**valuation benchmark developed using three methods: translating an existing benchmark, generating new corpora, and collecting available datasets. ViGLUE contains twelve tasks and encompasses over ten areas and subjects, enabling it to evaluate models comprehensively over a broad spectrum of aspects. Baseline models utilizing multilingual language models are also provided for all tasks in the proposed benchmarks. In addition, the study of the available Vietnamese large language models is conducted to explore the language models’ ability in the few-shot learning framework, leading to the exploration of the relationship between specific tasks and the number of shots.
Question answering involves creating answers to questions. With the growth of large language models, the ability of question-answering systems has dramatically improved. However, there is a lack of Vietnamese abstractive question-answering datasets, especially in the medical domain. Therefore, this research aims to mitigate this gap by introducing ViMedAQA. This **Vi**etnamese **Med**ical **A**bstractive **Q**uestion-**A**nswering dataset covers four topics in the Vietnamese medical domain, including body parts, disease, drugs and medicine. Additionally, the empirical results on the proposed dataset examine the capability of the large language models in the Vietnamese medical domain, including reasoning, memorizing and awareness of essential information.
Neural Machine Translation (NMT) aims to translate the source- to the target-language while preserving the original meaning. Linguistic information such as morphology, syntactic, and semantics shall be grasped in token embeddings to produce a high-quality translation. Recent works have leveraged the powerful Graph Neural Networks (GNNs) to encode such language knowledge into token embeddings. Specifically, they use a trained parser to construct semantic graphs given sentences and then apply GNNs. However, most semantic graphs are tree-shaped and too sparse for GNNs which cause the over-smoothing problem. To alleviate this problem, we propose a novel Multi-level Community-awareness Graph Neural Network (MC-GNN) layer to jointly model local and global relationships between words and their linguistic roles in multiple communities. Intuitively, the MC-GNN layer substitutes a self-attention layer at the encoder side of a transformer-based machine translation model. Extensive experiments on four language-pair datasets with common evaluation metrics show the remarkable improvements of our method while reducing the time complexity in very long sentences.
Word Order transfer is a compulsory stage and has a great effect on the translation result of a transfer-based machine translation system. To solve this problem, we can use fixed rules (rule-based) or stochastic methods (corpus-based) which extract word order transfer rules between two languages. However, each approach has its own advantages and disadvantages. In this paper, we present a hybrid approach based on fixed rules and Transformation-Based Learning (or TBL) method. Our purpose is to transfer automatically the English word orders into the Vietnamese ones. The learning process will be trained on the annotated bilingual corpus (named EVC: English-Vietnamese Corpus) that has been automatically word-aligned, phrase-aligned and POS-tagged. This transfer result is being used for the transfer module in the English-Vietnamese transfer-based machine translation system.
Machine Translation (MT) is the most interesting and difficult task which has been posed since the beginning of computer history. The highest difficulty which computers had to face with, is the built-in ambiguity of Natural Languages. Formerly, a lot of human-devised rules have been used to disambiguate those ambiguities. Building such a complete rule-set is time-consuming and labor-intensive task whilst it doesn’t cover all the cases. Besides, when the scale of system increases, it is very difficult to control that rule-set. In this paper, we present a new model of learning-based MT (entitled BTL: Bitext-Transfer Learning) that learns from bilingual corpus to extract disambiguating rules. This model has been experimented in English-to-Vietnamese MT system (EVT) and it gave encouraging results.